Overview

1. Background
2. Previous research
 1. FHWA
 2. SHRP2
 4. VDOT
 5. Pooled Fund Study, 2018-2021
3. Summary
Traffic Speed Deflectometer

• What is it?
 – A specialized truck with a 20-22kip rear axle load
 – Can measure traditional surface-observable condition
 – Doppler lasers measure deflection slope

• What can we do with it?
 – Assess the structural capacity of pavements at traffic speed (~50mph)
 – ...and measure rutting, ride quality, cracking, pavement and roadway images, cross slope
Benefits to Agencies

• Allow realistic production for network-level testing
 – Significant portions of a network can be covered daily
 – Include structural properties in PMS decision-making

• All this with...
 – Increased operator and public safety
 – Continuous (nearly) rather than discrete measurements
Background

• Pavement decision making
 – Based on surface observed distresses
 – Structural capacity data on a pavement network is rare

• Structural testing
 – Current state of the practice is FWD
 • Lane closures
 • Discrete data
Background

- FHWA study, 2011 & SHRP2 study, 2013
 - Identified several traffic speed deflection devices

- Benefits included
 - Continuous collection
 - Collection at near highway speeds

- Future work should study accuracy and analysis methods
Background

 – Focused on the devices identified previously

• Further studied TSDD data
 – Compared vehicle-measured pavement deflection with embedded sensors
 – Compared qualitative ranking of structural condition with FWD
 – Identified analysis parameters
TPF-5(282)

- Demonstrate network-level TSD testing
 - Two testing cycles
 - Two days per cycle
 - 9 agencies

- Agencies selected test routes

<table>
<thead>
<tr>
<th>State</th>
<th>Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>980</td>
</tr>
<tr>
<td>Georgia</td>
<td>646</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,040</td>
</tr>
<tr>
<td>Illinois</td>
<td>400</td>
</tr>
<tr>
<td>Nevada</td>
<td>352</td>
</tr>
<tr>
<td>New York</td>
<td>595</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>567</td>
</tr>
<tr>
<td>South Carolina</td>
<td>726</td>
</tr>
<tr>
<td>Virginia</td>
<td>622</td>
</tr>
<tr>
<td>Total</td>
<td>5,928</td>
</tr>
</tbody>
</table>
TPF-5(282) Data Example

Structural Condition I-81 South

- 2007 FWD
- 2010 FWD
- 2012 FWD
- 2013 FWD
- 2015 FWD
- 2015 TSD

Milepost

FWD D0 (mil)

TSD D0 (mil)
TPF-5(282) Data Example

\[y = 1.2698x - 0.7589 \]

\[R^2 = 0.9737 \]
TPF-5(282) Implementation Example
Idaho DOT Implementation Example

- Developing process for corridor management
- Combining network structural performance and ME performance predictions to estimate future maintenance schedules
 - Planned versus reactive maintenance
TPF-5(282) Findings

- Short- and long-term repeatability is good
 - More work needed for temperature correction

- TSD and FWD followed similar trends
 - But not a one-to-one replacement as expected

- Little relationship between TSD results and PMS surface condition
 - Shows need for structural testing
2017 Testing in Virginia

- 4,000+ miles of testing on interstate and primary routes
- Study impact to PMS results by including TSD-based structural response
- Deflection indices, rutting, ride quality, cracking, pavement and roadway images, cross slope
VDOT 2017, Remaining Work

• Identify strong vs weak sections and compare to PMS previous decision making and rehab history

• Determine ranges of calculated indices that identify good vs poor structural condition
 – Structural sufficiency vs design
 – Similar budget output from PMS
 – Combination?
cracking
rutting and IRI
thickness
deflection
Pooled Fund Study, 2018-2021

- TPF 5(385), Pavement Structural Evaluation with Traffic Speed Deflection Devices

- State partners
 - FHWA, Arkansas, Idaho, Illinois, Indiana, Kansas, Louisiana, Minnesota, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, Vermont
Pooled Fund Study Objectives/Scope

- Provide means to conduct demonstration testing
 - ARRB Group TSD & Dynatest Raptor

- Develop specifications for data collection and guidelines for PMS application

- Demonstrate
 - How to use data to support project level decision-making
 - Costs (and any savings) through case studies

- Conduct workshops and prepare training
Pooled Fund Study Commitment Levels

• Option 1
 – Participation in the study for one agency rep (no testing) = $15,000 / year

• Option 2a
 – Option 1 plus one day of testing on agency designated routes (~100-200 miles) = $45,000 / year

• Option 2b
 – Option 2a plus additional days of testing = $32,000 / day / year
Pooled Fund Study Status

• Project stated October 1, 2018

• Working with agencies for fall 2018 and spring 2019 testing

• Virginia
 – Likely one district per year and cover untested high priority routes within each
Thank you!

brian.diefenderfer@vdot.virginia.gov