Why Joint Concrete Pavements?
Concrete Shrinks!

Hydration Uses Water

Drying Shrinkage

Hot then Cold

HOT AT SET

\[\Delta L = \alpha \times \Delta T \times L \]

COOLED OFF

Thermal Shrinkage

Chemical Shrinkage
Shrinkage + Restraint = CRACKS!?!?

HOT AT SET, HIGH MOISTURE, UNHYDRATED CEMENT

If no restraint

COOL, DRY, HYDRATED CEMENT

TEFLON | No Friction/Restraint

With restraint

Subgrade/Subbase | Restraint
Curling and warping

(temperature and moisture gradients)

Positive ΔT

Negative ΔT

Positive Eff. ΔT

Negative Eff. ΔT
Why Joint Concrete Pavement?

Without joints, natural transverse & longitudinal cracking would form about like this…

40-80 ft → 15-20 ft
Why Joint Concrete Pavement?

- We place joints at a slightly shorter spacing to prevent natural cracking...
Conclusion: Good Jointing is a Key to Good Performance
Types of Joints

- Joint types:
 - Contraction
 - Construction
 - Isolation (and, if necessary, expansion)

- Each can occur in either the transverse or longitudinal directions.

- Also specialty joints (e.g., transitions, terminal joints in continuously reinforced, etc.).
Types of Joints

Transverse Contraction:

Undoweled – Transverse (Type A-1)

Smooth dowel

Doweled – Transverse (Type A-2)
Skewed Joints

photo courtesy of FHWA
Types of Joints

Longitudinal Contraction:

Untied – Longitudinal (Type A-3)

Deformed tie bar

Tied – Longitudinal (Type A-4)
Joint Spacing and Placement Considerations

PANEL LENGTH AND ASPECT RATIO
Effects of Panel Length: Shrinkage and Curl/Warp Stresses

Cantilever = 1/4 L

Length 12 to 15 ft., cantilever = 3 to 3.75 ft

Cantilever = 1/4 L

Length 6 ft., cantilever = 1.5 ft
Combined load and curl-warp stress
Effects of Joint Spacing on Slab Cracking

An MEPDG *example* for a specific pavement thickness and design conditions
Simple Formula for **JPCP**
Maximum Panel Dimension (Joint Spacing)

\[L_{\text{max}} = T \times C_s \]

- \(L_{\text{max}} \) = Maximum distance between joints (ft)
- \(T \) = Slab thickness (in.)
- \(C_s \) = Support constant
 - = 1.75 - 2 for subgrades or unstabilized [granular] subbases
 - = 1.5 - 1.75 for ATB, CTB, lean concrete [econocrete], or existing concrete or asphalt;
 - = 1 - 1.5 for bonded concrete overlays on asphalt (BCOA)

Rules of Thumb:
- Limit \(L_{\text{max}} \) to 15 ft for \(T < 10 \) inches unless local history shows longer panels work (e.g., low CTE of aggregate, granular base, light traffic, etc.)
- Keep aspect ratio (i.e., Length/Width) \(\leq 1.5 \)
There’s an app for this ...

Maximum Joint Spacing Calculator

Description

For jointed plain (unreinforced) concrete pavement (JPCP), the maximum allowable joint spacing or slab length depends on variables such as the slab thickness, concrete aggregate used, cement content, subgrade/subbase used, and climate. In most areas, the typical maximum transverse joint spacing for JPCP used in applications such as streets, roads, and highways is about 15 ft (4.5 m); a longer maximum transverse joint spacing may be used, however, based on local experience. Longitudinal joint spacing on two-lane and multilane concrete pavements typically is about 10 to 13 ft (3.0 to 4.2 m). This tool provides an estimate of the maximum allowable joint spacing based on the slab thickness and the subgrade/subbase used; two of the variables with the most prominent effect on joint spacing requirements. Slabs kept to dimensions shorter than those calculated by this tool will have curling and warping stresses within safe limits to ensure minimal risk of random cracking.

Concrete Pavement Structure Details

Concrete Pavement Thickness (in.): 8

Layer Immediately Below Concrete Surface Course:

- Subgrade
- Unstabilized (Granular) Subbase
- Stabilized Subbase
- Existing Asphalt Pavement
- Existing Concrete Pavement

[Calculate]

Joint Spacing Recommendation

Maximum Joint Spacing: 14

Note: The ratio of transverse joint spacing to longitudinal joint spacing should not exceed 1.5.
Alternate Criterion for JPCP
Maximum Panel Dimension (Joint Spacing)

\[\frac{L}{\ell} < 4.5 \text{ for stabilized base} \]
\[\frac{L}{\ell} < 5.0 \text{ for unstabilized base} \]

where:
\[L = \text{maximum panel dimension;} \]
\[\ell = \text{radius of relative stiffness (slab-foundation)} \]
\[= \left(\frac{E_c h^3}{12k(1 - \mu^2)} \right)^{0.25} \]

There’s an app for this, too!
apps.acpa.org
Other JPCP Joint Spacing Considerations

Use of “Randomized” Spacing (12’-13’-18’-19’ or similar)

- Reduce potential for resonant vehicle responses
- Max. joint spacing in “random” sequence should still be selected to avoid cracking (18-19 ft almost always exhibit cracking)
- Typically used with skewed joints (1:6, right ahead)
- Popular in late ‘70s and ‘80s, not common now (corner cracking problems, more complex joint repairs)

“Optimize” Joint Spacing

- Avoid midpanel cracking
- Limit number of joints (more cost effective)
- Limit opening of undoweled joints to 0.03 in
Influence of slab geometry on stresses

<table>
<thead>
<tr>
<th>4.5m x 1m</th>
<th>2.25 m x 1 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximun tensile stress = 24.65 Kg/cm²
Maximun tensile stress = 5.22 Kg/cm²

Principal stresses on the top of the slab, Red is tensile strength

<table>
<thead>
<tr>
<th>4.5m x 1m</th>
<th>2.25 m x 1 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deformation of the slab
Slab sizes and thicknesses for same top stress (2.5MPa)

Thickness: 10 inches
Concrete
Slabs 14.8 ft x 11.8 ft

Thickness: 6.3 inches
Concrete
Slabs 5.9 ft x 5.9 ft
Hundreds of lane-miles have been constructed in South and Central America over the last 10 years.
Joint Spacing “Best Practices” Summary

- Keep it Short!
- Keep it Uniform!
- Keep it Perpendicular!
- Keep it Simple!
- Keep it Practical!
Joint Spacing and Placement Considerations

JOINT LAYOUT
Rules for Joint Layout

Things to Do

- Match existing joints or cracks – location AND type!
- Cut joints at the proper time and to the proper depth
- Place joints to meet in-pavement structures
- Remember maximum joint spacing
- Place isolation joints where needed
- Understand that joint locations can be adjusted in the field!
- Be Practical

Location

Type
Rules for Joint Layout

Things to Avoid:
- Slabs < 2 ft wide
- Slabs > 15 ft wide
- Angles < 60° (90° is best)
 - Use “dog-leg” joints through curve radius points
- Creating interior corners
- “Odd” shapes
 - Keep slabs nearly square or rectangular, when possible
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 1: Draw all pavement edge and back-of-curb lines to scale in the plan view.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 2: Lightly draw circumference-return, taper-return, and crossroad-return lines as offsets of 1.5 – 3.0 ft.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 3: Draw all lane lines on the mainline roadway and crossroad. Do not extend through return lines (offsets).
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 4: Define mainline lanes for paving. Extend *only* these lane lines through return lines (offsets) to allow for slipform paving. Blockouts & doglegs will occur in the gutter pan at these locations.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 5: Add transverse joints locations where a width change occurs in the pavement (begin & end of tapers, tangents, curves, curb returns, etc.) and extend these joints through the curb & gutter.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 6: Add transverse joints between and beyond the joints defined in Step 5, but not to the center of the intersection. Attempt to keep the distance between joints less than L_{max}.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 7: Define the intersection box by extending the edges of pavement lines for the cross road and any turning lanes.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 8: Check the distances between the "intersection box" and the surrounding joints.
The Ten-Step Method for Intersections

Step 9: If the distance is more than the maximum desirable joint spacing, add transverse joints at an equal spacing. Do not extend these joints through return lines.
Concrete Intersections: Jointing

The Ten-Step Method for Intersections

Step 10: Extend lines from center of curb return radii to corners of intersection box panels. Draw joints along these “diagonal” lines. Make adjustments to eliminate doglegs in pavement edges.

![Diagram of concrete intersection jointing steps]

- **A** represents the corners of the intersection box panels.
- **B** indicates the center of curb return radii.
- **C** demonstrates the extension of lines from the center to the corners.
Concrete Intersections: Jointing

Details A, B, and C

A Width change and dogleg in gutter near point of curvature

B Width change and dogleg in gutter near start of a taper

C Width change and dogleg in paving lane for hand-pours
It works for other areas too.
Roundabouts: Lay Out Joints as Normal Intersection?
Proper Jointing of Roundabouts
What If I Have to Dead-end a Joint?

NOTES:
1. MAXIMUM JOINT SPACING = 15 FEET
2. EXPANSION JOINT FILLER PER STANDARD SPECIFICATION 415
3. TRUCK APRON TRANSVERSE JOINTS SHOULD NOT BE DOWELED OR TIED

CONCRETE CURB AND GUTTER (TYP.) TIED TO PAVEMENT
BACK OF CURB (TYP.)
FLANGE OF CURB (TYP.)
More Information?

- “Concrete Roundabouts: Rigid Pavement Well-Suited to Increasingly Popular Intersection Type,” R&T Update #6.03, ACPA, June 2005.
- Various agency standards…KS, WI, IA, OH, etc…
Diverging Diamond Interchanges
Jointing a DDI
What If I Have to Dead-end a Joint?

- Saw transverse joint deeper and reinforce slab to prevent sympathy crack
- Optional core hole (or formed hole) to prevent sympathy cracking

Raised island

Raised island
Concrete Intersections: Jointing

Adjust joints that are within 5 ft of a utility!
Concrete Intersections: Jointing

Box Out Fixture Details

- **Square Manhole Boxout**: Reinforcing bars recommended to hold cracks tight. Isolation joint.
- **Diagonal Manhole Boxout**: Isolation joint.
- **Circular Manhole Boxout**: Isolation joint.
- **Square Boxout with Fillets**: Isolation joint.
- **Manhole (No Boxout)**: Isolation joint/bond breaker around perimeter.
- **Telescoping Manhole**: No boxout or isolation joint necessary.
- **Round Inlet Boxout**: Isolation joint.
If You DO Box Out Properly...
If You DON’T Box Out Properly...
Good Practice...
Where to Place Isolation Joints

Where do you put isolation joints?

- 90° T
- 90° T/Apron
- Divided highway (non-concrete median)
- Skewed T
- 90° Skew
- Skew/Skew
Define Joint Type
Troubleshooting?

- Raveling or spalling is occurring due to sawing too soon or equipment problems.
- Early-age cracking is occurring due to sawing too late, insufficient joint depth, excessive joint spacing, excessive warping, excessive curling, too many lanes tied together, too much edge restraint, excessive slab/subbase bonding or restraint, misalignment of dowel bars, paving in cold weather, or paving in hot/dry weather.
- Sealant not adhering to joint.
- Sealant picks up or pulls out when opened to traffic.
- Sealant gelling in melting chamber (melter).
- Sealant cracking or debonding.
- Voids or bubbles in cured sealant.
- Etc…

... see ACPA literature or IMCP
Thank You For Your Attention!