Life-Cycle Cost Analysis
What’s Working?

Nathaniel Coley
Federal Highway Administration
Office of Asset Management
• Transportation Asset Management
 • Definition
 • FHWA Office of Asset Management

• Life-Cycle Cost Analysis
 • Definition
 • Process/LCCA Survey Results
 • 2007 AASHTO (Colorado)
 • 2007 AASHTO RAC (Mississippi)
 • 2006 South Carolina
 • Resources
Asset management is a systematic process of maintaining, upgrading, and operating physical assets cost-effectively. It combines engineering principles with sound business practices and economic theory, and it provides tools to facilitate a more organized, logical approach to decision-making. Thus, asset management provides a framework for handling both short- and long-range planning.
Mission

• “provide leadership and expertise in the systematic management of highway infrastructure assets.”

• “serves as an advocate for asset management, system preservation, pavement management and analysis, bridge management and inspection, and construction and maintenance activities, as well as technology development, outreach, and partnering initiatives.”
Three Teams

- **Construction and System Preservation**
 responsible for construction and maintenance program policy, technical support, and national outreach. Specific areas of responsibility include accelerated construction, transportation system preservation, and continuous quality improvement initiatives such as system preservation.
• The System Management and Monitoring Team: responsible for developing & promoting systematic approaches to the management of highway assets. This work includes refining and advancing the use of pavement and bridge management systems and developing systems where they presently do not exist, such as for tunnels and roadway hardware. The team is made up of a Pavement Management Group and a Bridge Management Group.
• Evaluation and Economic Investment Team
 – development and promotion of an array of procedures for inclusion in an engineering economic analysis toolbox, identification and dissemination of alternatives for developing data systems to support asset management, and providing assistance with implementation of relevant standards issued by the Governmental Accounting Standards Board (GASB).
Life-Cycle Cost Analysis Definition

- Life-Cycle Cost Analysis is a **process** for evaluating the total economic worth of a usable project segment by analyzing initial costs and discounted future costs, such as maintenance, user, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project segment.

Source: Transportation Equity Act for the 21st Century
Typical Life-Cycle Profile

- **Initial Capital Cost**
- **Benefits**
- **Costs**

Year
Life-Cycle Cost Analysis in Regulations

• SAFETEA-LU
• Value Engineering Code of Federal Regulations (CFR)
 – The systematic application of recognized techniques by a multi-disciplined team to identify the function of a product or service, establish a worth for that function, generate alternatives through the use of creative thinking, and provide the needed functions to accomplish the original purpose of the project, reliably, and at the lowest life-cycle cost without sacrificing safety, necessary quality, and environmental attributes of the project.
 – OIG Report
Life-Cycle Cost Analysis

Applying LCCA

- Compares costs (differential)
- Requires equal benefits
- Comparing designs/materials for a bridge, pavement, roadway markings, etc.
- Comparing management strategies
- Comparing work zone effects
- Occurs early in the project development process
The LCCA Process

1. Establish Alternatives
2. Determine Timing of Required Activities
3. Estimate Agency and User Costs
4. Compute Life-Cycle Costs
5. Analyze the Results
States Conducting LCCA

States:
- Colorado
- WA
- OR
- ID
- NV
- UT
- CA
- AZ
- NM
- TX
- LA
- FL
- AL
- GA
- SC
- NC
- VA
- OH
- WV
- PA
- NY
- NJ
- CT
- RI
- VT
- ME
- NH
- MA
- MD
- DE
- DC
2007 AASHTO Survey on Pavement Type Selection

1. Does your agency currently utilize LCCA for determining pavement type?

2. How many years long is your analysis period?

3. What discount rate do you utilize?

4. Do you include user costs in your analysis and if so, please briefly explain how that cost is determined?

5. Flexible Alternative Maintenance Treatments Please list below the treatments you account for in your LCCA for HMA and at what year(s) during the analysis period do you assume they will occur

6. Rigid Alternative Maintenance Treatments Please list below the treatments you account for in your LCCA for PCC and at what year(s) during the analysis period do you assume they will occur

7. Does your agency utilize LCCA to develop alternate pavement type bidding procedures?
Life-Cycle Cost Analysis

2007 AASHTO RAC Survey LCCA for Pavement Type Selection

States Conducting LCCA

Mississippi (Bidding)
1. What is the standard process(es) for selecting the pavement type?

2. What experimental methods have been used for selecting the pavement type that show promise?

3. What experimental methods have been used for selecting the pavement type that you are not planning to use again?

4. Several methods for selecting the pavement type are listed for your information.
 a) Owner makes the selection
 b) Owner makes the selection with the use of life cycle cost analysis
 c) Owner makes the selection with the use of life cycle cost analysis and a pavement type selection committee.
 d) Alternate bids are used with a life cycle cost adjustment factor.
 e) Some type of pavement warranty is included with the pavement type selection.
Two Step Process:
- initial survey (identify resources)
- focused survey

Objectives:
- improve the existing SC LCCA approach for pavement type selection
- determine which states are conducting an LCCA and how
- compare present results to previous surveys
Who Participated

Life-Cycle Cost Analysis

Participated in Both Surveys
Participated in initial Survey
Who is Using LCCA?

States Conducting LCCA
Step 1: Establish Alternatives

- Rigid Pavement
- Flexible Pavement
- Slurry Seals
- Diamond grinding
- Joint Repairs
- Crack Sealing
- Chip Seals
- Mill and Overlays
Step 2: Determine Activity Timing

When will the future preservation and/or countermeasure costs be incurred?
Life-Cycle Cost Analysis

Analysis Period (AASHTO RAC Survey)

Years

10–20
20–30
30–40
40–50

of states

0
1
2
3
4
5
6
7
8
9
10

Years
Life-Cycle Cost Analysis

Analysis Period (SC Survey)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Life-Cycle Cost Analysis

Time to First Rehab (AASHTO RAC Survey)

Flexible Pavements

- 5–10 years: 1
- 10–15 years: 5
- 15–20 years: 4
- 20–25 years: 2

Rigid Pavements

- 20 years: 3
- 20–25 years: 4
- 30 years: 1
- 40 years: 1
Time to first Rehab (AASHTO RAC Survey)

Flexible Pavements
- First Rehab
- Rehab Life

Rigid Pavements
- First Rehab
- Rehab Life
Include cost elements that are different between alternatives

Exclude cost elements that are the same between alternatives
 - Agency overhead costs
 - Normal operations user costs
 - Agency and user costs associated with routine maintenance
Life-Cycle Cost Analysis

Included Agency Costs (SC Survey)

- Resurfacing and Rehabilitation Cost: 21
- Initial Construction Costs: 21
- Maintenance of Traffic Cost: 12
- Routine Maintenance & Preservation: 10
- Preliminary Engineering: 9
- Construction Management: 8
- Associated Administrative Costs: 3

Number of State DOTs
User Cost Components

Three Components
1. Vehicle Operating Costs (VOC)
2. Delay Costs
3. Crash Costs
Out of 14 DOTs that include user costs in the analysis
- 10 DOTs consider work zone user delay costs
- 1 DOT uses all user cost components outlined in the FHWA Bulletin
- 4 DOTs are planning to include user costs in the future
Is Salvage Value used in LCCA calculations?

The value of recovered or recycled materials
- Assumes roadway is removed from service at the end the analysis period
- Salvage value is only realized when materials are actually reclaimed
Calculation of Salvage Value

- Only Serviceable Life: 20%
- Both Residual Value and Serviceable Life: 80%

31
Life-Cycle Cost Analysis

Remaining Value

Serviceability

Time

Terminal Serviceability Index

Life

Initial Activity
Activity One
Activity Two

Analysis Period
Life-Cycle Cost Analysis

Remaining Value

- Depreciation of initial costs (straight line) over the usefulness
• Costs are additive to the depreciated Structural value baseline in the year of expenditure
Life-Cycle Cost Analysis

Remaining Value

- Using the depreciated value curve to get the RV at the end of the analysis
Life-Cycle Cost Analysis

Step 4: Calculate PV of Life-Cycle Costs

Present Value = \sum_{k=0}^{N} \left(\text{Cost}_k \times \frac{1}{(1 + d)^{n_k}} \right)

- \text{N} = \text{length of analysis period}
- \text{d} = \text{discount rate}
- \text{n}_k = \text{year of expenditure}

Present Value Factor
Discounting/Inflation?

• Discounting is what a future sum is worth to us now regardless of inflation. What we require in return for forgoing other benefits.

• Inflation is a general rise in prices due to more demand than supply. Measured by various “price indices” and effects purchasing power. Critical for budgeting exercises.
Discount Rate Utilized by State DOTs

- **3%**: 4 DOTs
- **4%**: 11 DOTs
- **5.30%**: 2 DOTs
- **Varies**: 4 DOTs
Step 5: Analyze the Results

- How do agency costs compare?
- How do user costs compare?
- Can trade-offs be made?
Software Utilization in LCCA

- Developing software: 1
- No: 16
- Yes: 15
Life-Cycle Cost Analysis

Software Utilization in LCCA

- In-House & RealCost
- DNPS86 & DARWin
- RealCost & DARWin
- Investigating RealCost
- Developing Software
- In-House Spreadsheet
- Only RealCost
- Only DARWin

Number of State DOTs

Use Function

REALCOST FUNCTIONS User Function

Inputs (Traffic Data, Cost data, Discount Rate, etc.)

Model traffic conditions

Calculate Costs & Simulates (User & Agency)

Outputs (NPV curves & analysis graphs)

Evaluate Results in the Context of Project Objectives

RealCost Software
Inputs to the LCCA

Data Sources Used in Selecting the Input Parameters

- State Data + Consultants: 1
- State Data + AASHTO + Other State Reports: 1
- State Data + OMB Rate: 2
- State Data + FHWA: 10
- Only State Data: 7

Number of State DOTs
Approach Used

- **Deterministic Analysis**
 Static Inputs (No Uncertainty)

- **Sensitivity Analysis**
 Vary one input at a time

- **Probabilistic Analysis**
 Simulating/Modeling inherent uncertainty in variables and their effect on investment choices

- **Inputs**
 - Clock
 - Dollar Sign
 - Percentage

- **Outputs**
 - Present Value

- **Deterministic Approach**
 - 80%
- **Probabilistic Approach**
 - 20%
Life-Cycle Cost Analysis

Policy or Guidelines for Type Selection

- California DOT LCCA Manual
- New York DOT Pavement Design Manual
- Washington State Pavement Design Manual
- FHWA LCCA in Pavement Design Technical Bulletin
- Other References available on FHWA LCCA Webpage
Time of the Last LCCA Policy Revision

Number of States

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2005</th>
<th>2004</th>
<th>2003</th>
<th>3 yrs+</th>
<th>10 yrs+</th>
<th>15 yrs+</th>
<th>never revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary – What’s Working

- Choose an Analysis Period between 30 to 50 years
- Establish triggers for the LCCA
- Use Software to support the analysis
- Evaluate impact to Users (User Costs)
- Implement policy guide for practitioners
- Identify performance periods for activities
- Perform a probabilistic analysis to quantify uncertainty
- Use a discount rate between 3% & 5%
- Use available data sources (PMS, etc)
- Get Industry input
Available Resources from FHWA

- Fundamentals of LCCA Live Instructor Led Distance Learning Course
- RealCost Onsite Implementation Workshop
- RealCost LCCA Software
- Case Studies
- LCCA Technical Bulletin
- LCCA Primer
- LCCA Web Page
- Technical Support
Thank You

Nat Coley
FHWA Office of Asset Management
202.366.2171
http://www.fhwa.dot.gov/infrastructure/asstmgmt/