Traffic Characterization with the MEPDG

Chris Wagner, P.E.
FHWA – Resource Center
Why is traffic important to pavement design?
AASHTO Design Procedure
Damage vs. axle weight

- Remaining traffic, %
- Cumulative damage, %

Tandem axle load, kips

- < 5% of traffic
- 58% of total damage
What information do we need?
Information we need:

- Volume
- Classification
- Weight

- Design lane only
- Heavy vehicles only
Truck Volume

- Lane Distribution
- Direction Distribution
- Growth Factors
- Seasonal, Hourly factors
Day of Week Truck Volume Variation

- Rural Cars
- Rural Small Trucks
- Rural Combination
- Urban Cars
- Urban Single Units
- Urban Combinations

Day of Week:
- Sunday
- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Saturday
Seasonal Truck Volume Variation

- Urban Cars
- Rural Cars
- Rural Combination Trucks
- Rural Single Unit Trucks
Time of Day Truck Volume Variation
Screen Inputs
Truck Growth

- Monthly
- Traffic Growth
 - By class
 - Liner
 - Compound
Vehicle Classification
Vehicle Class Distribution

- 13 FHWA Classifications
- Only concerned with trucks

<table>
<thead>
<tr>
<th>Class</th>
<th>AADTT Distribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 4</td>
<td>1.8</td>
</tr>
<tr>
<td>Class 5</td>
<td>24.6</td>
</tr>
<tr>
<td>Class 6</td>
<td>7.6</td>
</tr>
<tr>
<td>Class 7</td>
<td>0.5</td>
</tr>
<tr>
<td>Class 8</td>
<td>5.0</td>
</tr>
<tr>
<td>Class 9</td>
<td>31.3</td>
</tr>
<tr>
<td>Class 10</td>
<td>9.8</td>
</tr>
<tr>
<td>Class 11</td>
<td>0.8</td>
</tr>
<tr>
<td>Class 12</td>
<td>3.3</td>
</tr>
<tr>
<td>Class 13</td>
<td>15.3</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Axle Configuration Parameters

- Wheel Base Width
- Axle Spacing
- Tire Pressure
- Dual Tire Spacing
- Axle Width
Traffic Wander

Used to calculate pavement responses & the number of axle load applications over a point for predicting distress & performance.

- Mean wheel location = 18 in.
- Standard deviation = 10 in.
- Design lane width.
Vehicle Weight
Vehicle Weight (Axle Load Spectra)

17% of Single Axles Class 9 Vehicles Weigh 10 kips
Tandem Axle Load Distribution
Lightly Loaded Trucks

Maximum Weight in a Given Axle Weight Group (x 1,000 lbs)

Fraction of Tandem Axles in Weight Group
Tandem Axle Load Distribution
Heavily Loaded Trucks

Maximum Weight in a Given Axle Weight Group (x 1,000 lbs)
ESAL Comparison

Lightly Loaded = 0.186 (flexible)
Moderately Loaded = 0.355
Heavily Loaded = 0.666

Conclusion:
Not knowing the loaded/unloaded condition can equal a 3X error in life expectancy
MEPDG Input screen

Axle Load Distribution Factors

Axle Load Distribution
- Level 1: Site Specific
- Level 2: Regional
- Level 3: Default

View
- Cumulative Distribution
- Distribution

Axle Types
- Single Axle
- Tandem Axle
- Tridem Axle
- Quad Axle

Axle Factors by Axle Type

<table>
<thead>
<tr>
<th>Season</th>
<th>Veh. Class</th>
<th>Total</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4</td>
<td>100.00</td>
<td>1.8</td>
<td>0.96</td>
<td>2.91</td>
<td>3.99</td>
<td>6.8</td>
</tr>
<tr>
<td>January</td>
<td>5</td>
<td>100.00</td>
<td>10.05</td>
<td>13.21</td>
<td>16.42</td>
<td>10.61</td>
<td>9.22</td>
</tr>
<tr>
<td>January</td>
<td>6</td>
<td>100.00</td>
<td>2.47</td>
<td>1.78</td>
<td>3.45</td>
<td>3.95</td>
<td>6.7</td>
</tr>
<tr>
<td>January</td>
<td>7</td>
<td>100.00</td>
<td>2.14</td>
<td>0.55</td>
<td>2.42</td>
<td>2.7</td>
<td>3.21</td>
</tr>
<tr>
<td>January</td>
<td>8</td>
<td>100.00</td>
<td>11.65</td>
<td>5.37</td>
<td>7.84</td>
<td>6.99</td>
<td>7.99</td>
</tr>
<tr>
<td>January</td>
<td>9</td>
<td>100.00</td>
<td>1.74</td>
<td>1.37</td>
<td>2.84</td>
<td>3.53</td>
<td>4.93</td>
</tr>
<tr>
<td>January</td>
<td>10</td>
<td>100.00</td>
<td>3.64</td>
<td>1.24</td>
<td>2.36</td>
<td>3.38</td>
<td>5.18</td>
</tr>
<tr>
<td>January</td>
<td>11</td>
<td>100.00</td>
<td>3.55</td>
<td>2.91</td>
<td>5.19</td>
<td>5.27</td>
<td>6.32</td>
</tr>
<tr>
<td>January</td>
<td>12</td>
<td>100.00</td>
<td>6.68</td>
<td>2.29</td>
<td>4.87</td>
<td>5.86</td>
<td>5.97</td>
</tr>
<tr>
<td>January</td>
<td>13</td>
<td>100.00</td>
<td>8.88</td>
<td>2.67</td>
<td>3.81</td>
<td>5.23</td>
<td>6.03</td>
</tr>
<tr>
<td>February</td>
<td>4</td>
<td>100.00</td>
<td>1.8</td>
<td>0.96</td>
<td>2.91</td>
<td>3.99</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Tools to gather Volume, Weight and Classification Data?
Tube counters
Weigh in Motion Station
Key Fact ………..

A small amount of good data is better than a large amount of poor quality data…..

Typically only 25% of WIM data is has been found to contain quality data.
Focus

• Information on most prevalent vehicles
• Overweight, permit vehicles
• Make it practical for design
 – Catalog traffic files
Questions ???