Comparable Pavement Designs at GDOT

A. J. Jubran, P.E.
State Pavement Engineer

June 3

2008 SEPMDC
N Little Rock, Arkansas
Comparable Pavement Designs

- Current Design Practice

- Constraints of the Current Practice

- Interim Direction for Comparable Designs
Flexible Pavement Design

Based on the 1972 AASHTO Interim Guide for the Design of Pavement Structures

- INPUTS: Soil Support Value, Regional Factor, Traffic Volumes and Truck percentages
- OUTPUT: Structural Number (SN)

June 3

2008 SEPMDC
N Little Rock, Arkansas
Flexible Pavement Design

- Layer Thicknesses \((D_i) \) are multiplied by appropriate layer coefficients \((a_i) \)

\[
SN = a_{\text{surface}} D_{\text{surface}} + a_{\text{binder}} D_{\text{binder}} + a_{\text{base AC}} D_{\text{base AC}} + a_{\text{GAB}} D_{\text{GAB}}
\]

- The aggregate base course is part of the pavement structure
Typical Flexible Layer Thicknesses

- D_{surface} >> 1.25 or 1.5 inches
- $D_{\text{intermediate}}$ >> 2 inches
- $D_{\text{base AC}}$ >> 3 inches minimum
- D_{GAB} >> 8,10, or 12 inches
Rigid Pavement Design Method

- Based on the 1981 Revision of the 1972 Interim AASHTO Design Guide

- INPUTS: Effective Modulus of Subgrade Reaction (k_{eff}), Modulus of Rupture, Traffic Volumes, and Truck percentages

- OUTPUT: slab thickness (D)
Typical Rigid Design Inputs

- **Subgrade**
 - k_{Subgrade} ranges from 110 to 200 pci

- **Interlayer**
 - $D_{\text{AC Interlayer}} : 3$ inches of 19 mm SP

- **Aggregate Base**
 - $D_{\text{GAB}} : 8, 10, or 12$ inches
Typical Rigid Design Inputs

- **Concrete**
 - Modulus of Rupture $f_r = 600$ psi
 - Design Tensile Strength
 $$f_t = 0.75 \times f_r \Rightarrow 450 \text{ psi}$$
 - $E_c = 3,200,000$ psi
Other Rigid Design Inputs

- Traffic loading volumes are same as in Flexible Design.
 - Rigid ESAL factors are higher.

- Load Transfer Coefficient (J) of 3.2
 - Assumes little edge support

- Reliability of 80% - 85%
ESAL Factors Used

- **MU**
 - Flexible = 1.500
 - Rigid = 2.680

- **SU**
 - Flexible = 0.400
 - Rigid = 0.500

- **Vehicles**
 - Flexible is not calculated
 - Rigid = 0.004
Comparable Pavement Designs

- Current Design Practice

- Constraints of the Current Practice

- Interim Direction for Comparable Designs
Constraints of the Current Practice

- The same GAB thickness is used for both pavement types
 - Geotechnical recommendation

- Flexible pavements are under-designed by 10%-15%
 - To allow future resurfacing in 10 years
Constraints: cont’d

- Rigid pavements are not under-designed
 - Difficult to overlay JPC with a thin JPC layer

- Rigid pavements have an interlayer
 - Permeability

- Total thicknesses of rigid pavements are greater than the flexible pavements
In General

- With a Soil Support Value of 2.0,
 - The required GAB layer thickness is 12 inches
 - The SN of the GAB is 1.92
And

- For the same soil, the k value of the subgrade is 110 pci,

 - The required GAB layer is also 12 inches

 - The rigid pavement has an additional layer of 3 inches of 19 mm SP

 - The effective k value (k_{eff}) is 260 pci
Heavy State Route Example

- Required flexible pavement
 - Required SN = 6.4±
 - Required Structure
 - 10.5 inches AC
 - 12 inches of GAB (30% Contribution)

- Required rigid pavement
 - Required Thickness = 10.3 inches
 - Additional Structure
 - 3 inches of 19 mm SP
 - 12 inches of GAB
Local Collector Example

- Required flexible pavement
 - Required SN = 4.7±
 - Required Structure
 - 6.5 inches AC
 - 12 inches of GAB (41% Contribution)

- Required rigid pavement
 - Required Thickness = 7 inches
 - Additional Structure
 - 3 inches of 19 mm SP
 - 12 inches of GAB
Another Look at Heavy State Routes

- Without the GAB and AC Interlayer,
 - $k_{eff} = k_{subgrade} = 110$ pci
 - 10.8 inches of JPC Pavement is needed

- With the GAB and AC Interlayer
 - $k_{eff} = 260$ pci
 - 10.3 inches of JPC Pavement is needed
 - Therefore, the GAB and Interlayer system reduced the total slab thickness by 5%
Another Look at Local Collectors

- Without the GAB and AC Interlayer,
 - $k_{\text{eff}} = k_{\text{subgrade}} = 110$ pci
 - 7.5 inches of JPC Pavement is needed

- With the GAB and AC Interlayer
 - $k_{\text{eff}} = 260$ pci
 - 7 inches of JPC Pavement is needed
 - Therefore, the GAB and Interlayer system reduced the total slab thickness by 7%
Design Summary

- In the flexible pavement, the GAB layer is an essential element of the final structure.
 - 30 to 40% of the SN

- In the rigid pavement, the GAB layer and the asphalt concrete Interlayer are
 - 5 to 10% of the thickness
Design Considerations

- Should the GAB layer and asphalt interlayer be eliminated?
 - **NO.** They are needed for handling constructability and permeability issues.

- Can the GAB layer and asphalt interlayer be reduced?
 - **YES.** On state routes and not interstates.
History of the Current Practice

- GDOT up to early 2000’s used to selectively use AC Interlayer on state route projects

- Interlayer was omitted when traffic volumes do not justify the additional costs

- Interlayer was used on Interstates
Performance

- These pre-2000 PCC Pavements with no interlayer are showing good performance
 - I-285 in Decatur County b/w I-20 to I-85
 - GA 400 in Fulton and Forsyth Counties
 - Zell Miller Parkway

- The newer PCC Pavements without the interlayer are also showing good performance to date
 - Homer Bypass
Comparable Pavement Designs

- Current Design Practice

- Constraints of the Current Practice

- Interim Direction for Comparable Designs
Proposed Direction For Comparable Designs

Implement MEPDG…

...In 2 – 3 years

BUT In the meantime…
Interim Direction For More Comparable Designs

- **Base Guidelines**
 - If $SSV < 3.0$, use 10 inches GAB
 - If $SSV \geq 3.0$, use 8 inches GAB

- **Interlayer Guidelines**
 - For Interstates, use 3 inches of 19 mm SP
 - For State Routes, 3 inches of 19 mm SP is waived, unless truck traffic (volume, ESALs, etc…) warrant its use.
Comparison of Designs

The following pavement designs were prepared for

- Life Cycle Cost Analysis (LCCA) / Pavement Type Selection (PTS)

- Used Old and Interim Design Guidelines for Comparison

June 3

2008 SEPMDC
N Little Rock, Arkansas
Old and Interim GAB Layers

<table>
<thead>
<tr>
<th>SSV</th>
<th>k_{subgrade}</th>
<th>GAB$_{\text{old}}$</th>
<th>GAB$_{\text{interim}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>110</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>130</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3.0</td>
<td>150</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3.5</td>
<td>175</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
Old And Interim AC Interlayer
And k_{design}

<table>
<thead>
<tr>
<th>Old Interlayer</th>
<th>k_{design}</th>
<th>Interim Interlayer</th>
<th>k_{design}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>260</td>
<td>0</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>280</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>3</td>
<td>270</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>0</td>
<td>215</td>
</tr>
</tbody>
</table>
Pavement Designs for SSV = 2.0

<table>
<thead>
<tr>
<th>Flexible</th>
<th>Old Rigid</th>
<th>Interim Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Layer (inches)</td>
<td>GAB Layer (inches)</td>
<td>Slab Depth (inches)</td>
</tr>
<tr>
<td>9.5</td>
<td>12</td>
<td>8.3</td>
</tr>
</tbody>
</table>

- **AADT_{20 year} = 11,550**
- **MU=1**
- **SU=3**

- Interlayer = 3 in
- $k_{design} = 260$ pci

- Interlayer = 0 in
- $k_{design} = 175$ pci
Pavement Designs for SSV = 2.5

<table>
<thead>
<tr>
<th></th>
<th>Flexible</th>
<th>Old Rigid</th>
<th>Interim Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Layer (inches)</td>
<td>6.25</td>
<td>7.1</td>
<td>7.6</td>
</tr>
<tr>
<td>GAB Layer (inches)</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Slab Depth (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAB Layer (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab Depth (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAB Layer (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **AADT$_{20 \text{ year}}$ = 4720**
- **MU=1**
- **SU=5**
- **$k_{\text{design}} = 280$ pci**
- **$k_{\text{design}} = 195$ pci**

June 3

2008 SEPMDC
N Little Rock, Arkansas
Pavement Designs for SSV = 2.5

<table>
<thead>
<tr>
<th>Flexible</th>
<th>Old Rigid</th>
<th>Interim Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Layer (inches)</td>
<td>GAB Layer (inches)</td>
<td>Slab Depth (inches)</td>
</tr>
<tr>
<td>11.5</td>
<td>12</td>
<td>10.2</td>
</tr>
</tbody>
</table>

$\text{AADT}_{20 \text{ year}} = 9900$

| MU=6 | SU=4 |
| | |

$k_{\text{design}} = 280 \text{ pci}$

$k_{\text{design}} = 195 \text{ pci}$

June 3

2008 SEPMDC

N Little Rock, Arkansas
Pavement Designs for SSV = 3.0

<table>
<thead>
<tr>
<th></th>
<th>Flexible</th>
<th>Old Rigid</th>
<th>Interim Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Layer (inches)</td>
<td>GAB Layer (inches)</td>
<td>Slab Depth (inches)</td>
<td>GAB Layer (inches)</td>
</tr>
<tr>
<td>11.5</td>
<td>12</td>
<td>11.6</td>
<td>12</td>
</tr>
</tbody>
</table>

AADT\textsubscript{20 year} = 18,200

- MU=7
- SU=7
- Interlayer = 3 in
- $k_{\text{design}} = 270$ pci
- Interlayer = 0 in
- $k_{\text{design}} = 195$ pci

June 3

2008 SEPMDC
N Little Rock, Arkansas
Pavement Designs for $SSV = 3.5$

<table>
<thead>
<tr>
<th></th>
<th>Flexible</th>
<th>Old Rigid</th>
<th>Interim Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Layer (inches)</td>
<td>6.5</td>
<td>10.3</td>
<td>10.6</td>
</tr>
<tr>
<td>GAB Layer (inches)</td>
<td>12</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Slab Depth (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAB Layer (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab Depth (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAB Layer (inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $AADT_{20\text{ year}} = 8775$
- $MU=8$
- $SU=3$
- $k_{\text{design}} = 300 \text{ pci}$
- $k_{\text{design}} = 215 \text{ pci}$

June 3

2008 SEPMDC
N Little Rock, Arkansas
Questions ? ? ?