Friction Testing: Florida
State of the Practice
Background (con’t)

- Identify potential hazardous conditions,
- Determine friction characteristics,
- Assess need for rehabilitation/maintenance.
That was then ...
That was then ...
Background (con’t)

- FDOT testing since late 1950s.
- Initially used stopping distance method,
- Modified to include a decelerometer
That was then … 50s
Background (con’t)

- Trailer concept introduced in mid-1960s
- FDOT built its first trailer (E-274-65T).
- E-274 for Skid Resistance of Paved Surfaces Using a Full-Scale Tire adopted:
 - Locked wheel dragged over a wetted surface under constant load and speed
That was then ... 60s
That was then ... 70s
That was then ... 80s
This is now ...
Locked-Wheel Testers:
- instrumented trailer w/locked wheel system.
- 2-axis transducer:
 - Horizontal friction force
 - Dynamic vertical load.
Friction Number

- \[FN = \left(\frac{F}{W} \right) \times 100 \]
 - \(F \) = Horizontal Force
 - \(W \) = Dynamic Vertical Load

- Example: \[FN = \left(\frac{500\text{lb}}{1085\text{lb}} \right)\times100 = 46 \]
Tire Friction Vs. Braking

- 2 Controlling Factors
 - Static Friction
 - Kinetic Friction
Friction Lockup

![Graph showing friction over time](image-url)
CATEGORIES OF TESTING

- Inventory
- Spot hazard
- Special request
- Overlay/New construction
- Re-test
INVENTORY

- FHWA skid accident reduction program (1980)
- 1/3 of system annually
- Interstate/toll system every 2 years
- Database to monitor state roadway system
SPOT HAZARD

- High number of wet-weather accidents
 - Request by District Safety Engineers
 - Law enforcement agencies, city, county, or concerned motorists
Others

- District Request
- Test Sections
- Product evaluations
- Off-system locations (city, county)
Overlay/New Construction

- State roadways which have been resurfaced
- All resurfacing projects with federal aid participation
- Safety Improvements
RE-TEST

- Friction Test and Action Program (FTAP)
 - Resurfaced Section with FN < 35
Field Test Procedures

- Two-lane roadways
- Four-lane roadways – both traffic lanes tested
- Multi-lane roadways - lane #1 or lane #2 (middle) tested both directions
- Overlay/new construction – all lanes tested
- Testing frequency – normally 3 tests per mile or section
Friction Number Guidelines

<table>
<thead>
<tr>
<th>Posted Speed Limit</th>
<th>ALL HIGHWAY SECTION SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Questionable</td>
</tr>
<tr>
<td><= 45 MPH</td>
<td>FN1 40</td>
</tr>
<tr>
<td>> 45 MPH</td>
<td>25</td>
</tr>
</tbody>
</table>

1. **EXISTING PAVEMENTS** - WARRANTS INVESTIGATION TO DETERMINE IF CORRECTIVE ACTION IS NECESSARY. REVIEW PERCENT OF WET WEATHER ACCIDENTS, SURFACE CONDITIONS, TRAFFIC DENSITY, DRAINAGE, ETC.

2. **EXISTING PAVEMENTS** – WARRANTS REVIEW TO DETERMINE IF SECTION APPEARS ON 25% OR 50% WET WEATHER CRASH LIST. IF ON LIST, INVESTIGATE AS OUTLINED IN NOTE 1.

3. **DESIRED VALUE FOR NEW PAVEMENT SURFACES**

Table 1, Appendix E-1, Highway Safety Improvement Program Guidelines
CALIBRATION

- 30 to 45 Days
 - Transducer, Speed, Distance
 - Conduct Test on Local Sections

- 6 Months
 - Water Flow
Local Reference Sections

June 2004

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Unit #6</th>
<th>Unit #7</th>
<th>Unit #8</th>
<th>Unit #9</th>
<th>Section Mean FN_{40R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(FC-3)</td>
<td>32.1</td>
<td>31.5</td>
<td>33.5</td>
<td>32.6</td>
<td>32.4</td>
</tr>
<tr>
<td>2(FC-2)</td>
<td>35.7</td>
<td>33.0</td>
<td>34.9</td>
<td>36.6</td>
<td>35.1</td>
</tr>
<tr>
<td>3(FC-5,O)</td>
<td>33.7</td>
<td>32.3</td>
<td>34.1</td>
<td>33.6</td>
<td>33.4</td>
</tr>
<tr>
<td>4(FC-5,G)</td>
<td>38.6</td>
<td>39.4</td>
<td>40.0</td>
<td>38.7</td>
<td>39.2</td>
</tr>
<tr>
<td>5(FC-4)</td>
<td>47.0</td>
<td>45.6</td>
<td>46.0</td>
<td>46.3</td>
<td>46.3</td>
</tr>
</tbody>
</table>

- **Unit Mean** based on five (5) tests per section
- **Section Mean** based on twenty (20) tests per section
Reference Calibration

- Texas Transportation Institute
- 2 units calibrated annually
- In-house calibration equipment (force plate/flow meter) calibrated annually
- Calibration Report
Additional Friction Services
Airport Friction Tester
Airport Maintenance of Runways
Retractable 5th Wheel for Continuous Slip Friction
Laser Based Technology

- Implement IFI for Pavement Management
- Friction and Texture
- Establish Friction Speed Gradient
50 MPH Study

- High Speed Facilities (Open Grade Mixtures Only) Minimum Speed Increased to 50
- 7 Districts evaluated
- 1,500 miles (FN) tested at 40 and 50 mph
- Macrotexture information collected also
$$FN_{40} = 1.107FN_{50} - 2.584$$

$$R^2 = 0.98$$
Crosswalk Specification 523
Patterned/Textured Pavements

- Prequalification (min 35 FN40R)
- QPL Field Test Section (3 year)
 - Minimum 8K – 12K ADT
 - Minimum of FN 35
 - Maintain 50% texture
- Evaluating site specific tools to enhance product evaluation
 - Dynamic Friction Tester
 - Circular Texture Meter
Site Specific Friction Equipment

- Replace Older Test Equipment (Sand Patch, Pendulum)
- Dynamic Friction Tester
 ASTM E-1911
- Circular Texture Meter
 ASTM E-2157
Precision

“In this world nothing is certain but death & taxes”

B. Franklin (1789)

- Assess precision of locked-wheel testers for friction measurements (ASTM E-274)
Data Collection

- 4 locked-wheel testers
- Ribbed (E-501) & Smooth (E-524) tires
- 5 sections to include different surface textures & serviceability levels
- 5 sites w-each section
Data Collection (cont.)

- Measurements along predefined paths
- Minimum of 5 mn between repeat lockups
- Start of test identified by 6-in x 4 ft strip
- Four replicate per site per tester
- Testing in accordance with ASTM E-274
Data Analysis
Precision

- Data analyzed as factorial experiments
- Repeatability & reproducibility assessed in terms of:
 - Range: measure of data dispersion;
 - Std. Dev.: measure of deviation around mean;
 - COV: normalized way of expressing variability.
<table>
<thead>
<tr>
<th>Section</th>
<th>Avg. FN<sub>40R</sub></th>
<th>Range</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W/U</td>
<td>B/U</td>
</tr>
<tr>
<td>Open Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>4.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Dense Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>4.3</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Pooled Statistics</td>
<td></td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Pooled Statistics</td>
<td></td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Overall Pooled Statistics</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>
Smooth Tire Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Avg. $F_{N_{40R}}$</th>
<th>Range</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W/U</td>
<td>B/U</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>4.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Open Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>4.9</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>4.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Pooled Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>5.3</td>
<td>6.1</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>6.5</td>
<td>7.1</td>
</tr>
<tr>
<td>Pooled Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Pooled Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Ribbed Tire</td>
<td>Smooth Tire</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg. FN\textsubscript{40R}</td>
<td>Range W/U</td>
<td>B/U</td>
</tr>
<tr>
<td>Open Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>4.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Pooled Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Dense Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>4.3</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Pooled Statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Overall Pooled Statistics</td>
<td>1.3</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>
“D2S” as index of precision (ASTM C-670)

95% confidence level

Testing per ASTM E-274:

- Repeatability
 - Results should not differ by more than 3.7 (Ribbed) and 4.5 (Smooth)

- Reproducibility
 - Results should not differ by more than 4.0 (Ribbed) and 5.1 (Smooth)
Finding Summary

- Comparison of 800 measurements showed good correlation between testers.
- High level of precision regardless of texture or serviceability level. Pooled Std. Dev. for repeatability below value in E-274.
- Effect of surface textures/serviceability levels on testers’ precision negligible.
QUESTIONS???