Pavement Analysis: DOT Preservation Techniques through Optimization Analysis

Kingsley Nwosu
Product Manager
Overview of Pavement Analyst™

- Track Key Performance Metrics
- View Inventory & Condition
- Generate Optimized Work Plans
- Model Future Performance
- Determine Preservation Strategies, Funding Levels & Consequences

© 2019 AgileAssets Inc. All Rights Reserved
Overview of Pavement Analyst™

- Asset Data
- Pavement Condition
- Traffic
- Pavement Structure

Aggregation

- Engineering Framework
 - Models
 - Decision Rules
 - Treatments

- Master Files

Optimization Analysis

Outputs

- Work Plans
- Projections
- Reports
Why Focus on Preservation

Sustainable
- 80% non-renewable resources < R^2

Economic Vitality
- 25% jobs > R^2

Maximize ROI
- $1 == ($6 to $10)$

Higher LOS and Safety
- Less traffic disruptions/delays and improved roadway condition

Business Drivers
Preservation Technique: Define Treatments

Categorize treatments

Non-Preventive Maintenance

- PCC Lane Replacement
- Crack Seat and Overlay
- HMA Thick Overlay
- Full Depth Reclamations
- PCC Overlay
Preservation Technique: Define Treatments

<table>
<thead>
<tr>
<th>Treatment No.</th>
<th>Treatment Name</th>
<th>Unit Cost</th>
<th>Comment</th>
<th>Selection Priority</th>
<th>Exclusion Priority</th>
<th>Exclusion Years</th>
<th>Cost</th>
<th>Budget Group</th>
<th>Work Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>Seal Coat - Corrective</td>
<td>$94,000</td>
<td></td>
<td>20</td>
<td>8</td>
<td>8</td>
<td>Unit Cost Per Lane Mile</td>
<td>Corrective Maintenance</td>
<td>Seal Coat</td>
</tr>
<tr>
<td>196</td>
<td>HMA Medium Overlay</td>
<td>$350,000</td>
<td>Thickness greater than 0.</td>
<td>30</td>
<td>5</td>
<td>3</td>
<td>Unit Cost Per Lane Mile</td>
<td>CAPM</td>
<td>Medium Overlay</td>
</tr>
<tr>
<td>197</td>
<td>HMA Thick Overlay</td>
<td>$600,000</td>
<td>Thickness Greater Than 0</td>
<td>40</td>
<td>3</td>
<td>4</td>
<td>Unit Cost Per Lane Mile</td>
<td>Rehab</td>
<td>Thick Overlay</td>
</tr>
<tr>
<td>199</td>
<td>Full Depth Reclamation</td>
<td>$1,000,000</td>
<td>Changed from 1.661 mil</td>
<td>70</td>
<td>4</td>
<td>4</td>
<td>Unit Cost Per Lane Mile</td>
<td>Rehab</td>
<td>Full Depth Reclam.</td>
</tr>
<tr>
<td>200</td>
<td>Cold In-Place Recycling</td>
<td>$345,000</td>
<td></td>
<td>60</td>
<td>7</td>
<td>3</td>
<td>Unit Cost Per Lane Mile</td>
<td>CAPM</td>
<td>Cold In-Place</td>
</tr>
<tr>
<td>201</td>
<td>Seal Cracks</td>
<td>$5,000</td>
<td></td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>Unit Cost Per Lane Mile</td>
<td>Preventive Maintenance</td>
<td>Unknown</td>
</tr>
<tr>
<td>223</td>
<td>Hot In-Place Recycling</td>
<td>$345,000</td>
<td></td>
<td>65</td>
<td>7</td>
<td>3</td>
<td>Unit Cost Per Lane Mile</td>
<td>CAPM</td>
<td>Cold In-Place</td>
</tr>
<tr>
<td>216</td>
<td>Dogouts - Corrective</td>
<td>$920,000</td>
<td></td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>Digouts Cost Expression</td>
<td>Corrective Maintenance</td>
<td>Cold In-Place</td>
</tr>
<tr>
<td>234</td>
<td>Slab Replacement with Asphalt</td>
<td>$0</td>
<td></td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>Replace Slabs Expression</td>
<td>Corrective Maintenance</td>
<td>Slab Replacement</td>
</tr>
<tr>
<td>212</td>
<td>Microsurfacing</td>
<td>$65,000</td>
<td></td>
<td>23</td>
<td>8</td>
<td>6</td>
<td>Unit Cost Per Lane Mile</td>
<td>Preventive Maintenance</td>
<td>Seal Coat</td>
</tr>
</tbody>
</table>

Improvements

- **Condition Attributes**
 - IRI AVG (in/mi)
 - CRACKING - HMA WI
 - Mean Prof Depth
 - Flexible Total Crack
 - Alligator A (%) (New PC model)
 - CRACKING - PCCP Sl

- **Future Detr Type**
 - New PC model

- **Condition Improvement Script**
 - Improve to - 60
 - Improve to - 0
 - Improve to - 1,000

- **Effective for... years**
 - New PC model

Other Improvements

- **Changing Attributes**
 - Alligator A pct
 - % Unsealed Flex Cracks
 - Work Code
 - Pavement Type

- **Condition Improvement Script**
 - Reset to 0
 - Improve to - 0
 - Set to Flexible

- **Other**
 - Date Update
 - User Update
 - Comment
 - 04/27/2016
 - 02/01/2013
 - 08/19/2013
 - 03/13/2012
 - 01/25/2012
 - CONFIG
 - PAVEM-PROXY
 - PAVEM-PROXY
 - ERIC
 - VYSHNAVI
Preservation Technique: Decision Trees

- **Root**: strategy
- **Level 1**: condition
- **Level 2**: condition, decision
- **Level 3**: decision, decision
Design scenarios with sub-divided budget constraints
Scenarios

<table>
<thead>
<tr>
<th>Scenario Number</th>
<th>* Scenario Name</th>
<th>Analysis Scope</th>
<th>* Analysis Period (Years)</th>
<th>* Save Details</th>
<th>Work Plan Type</th>
<th>Analysis Type</th>
<th>Skip Init. Deterioration</th>
<th>Has Results</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>2890</td>
<td>IB-Statewide GHG-Fine (actual $)</td>
<td>Segmentation Type in (Fine Segmentation - ...</td>
<td>14</td>
<td></td>
<td>Dirrim’s Scratch Ped</td>
<td>Multi-Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2891</td>
<td>KA - Pre/Post 3 Projects</td>
<td>County in (Imperial County; San Diego County; ...</td>
<td>7</td>
<td></td>
<td>Karam2</td>
<td>Multi-Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2895</td>
<td>Statewide NHS Routes</td>
<td>NHS - Segmentation Type in (NHS Segmentation - ...</td>
<td>7</td>
<td></td>
<td>2020 PCC Workplan</td>
<td>Multi-Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2897</td>
<td>IB-Statewide GHG-Coarse (actual $)</td>
<td>Segmentation Type in (Coarse Segmentation - ...</td>
<td>20</td>
<td></td>
<td>2019 HSMP Pipeline Pw</td>
<td>Multi-Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2895</td>
<td>RD - 2019 TYP Gap Analysis, Class</td>
<td>Class =3 and Segmentation Type in ...</td>
<td>14</td>
<td></td>
<td>AM4</td>
<td>Multi-Constraint</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is Objective?

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Constraint Limit Value</th>
<th>Year</th>
<th>Condition Threshold</th>
<th>Add Constr.</th>
<th>Constraint Subdivision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance - IRT/Tral</td>
<td>Weighted Avg</td>
<td></td>
<td></td>
<td>Preventive Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget ($)</td>
<td>Total</td>
<td>50,000,000.00</td>
<td></td>
<td>PM, CM, CAPM, and Rehab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget ($)</td>
<td>Total</td>
<td>10,000,000.00</td>
<td></td>
<td>Corrective Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget ($)</td>
<td>Total</td>
<td>30,000,000.00</td>
<td></td>
<td>PM, CM, CAPM, and Rehab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budget ($)</td>
<td>Total</td>
<td>40,000,000.00</td>
<td></td>
<td>PM, CM, CAPM, and Rehab</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reporting Functions

<table>
<thead>
<tr>
<th>Constraint Column</th>
<th>Constr. Type</th>
<th>Constraint Subdivision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget ($)</td>
<td>Total</td>
<td>District</td>
</tr>
</tbody>
</table>

© 2019 AgileAssets Inc. All Rights Reserved | Confidential
Summary

- Decision Tree Criteria
- Treatments, Benefit/Cost and Condition Reset
- Optimization constrained by budget group
- Use existing preservation-based work plans

- Quality Data
Questions
Thank you!

Learn more at www.agileassets.com