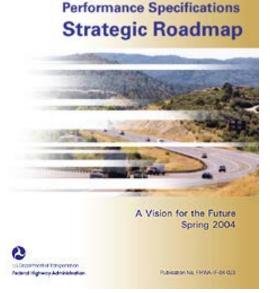
PASSFlex for Integration of Asphalt Mix Design, Pavement Design, and Performance-Related Specifications

Y. Richard Kim Jimmy D. Clark Distinguished University Professor North Carolina State University

Presented at the 2019 Southeastern States Pavement Conference Louisville, KY


October 10, 2019

Outline

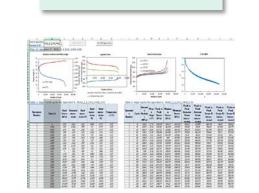
- What is PASSFlex?
- Test Methods, Models, and Software Programs
- Performance-Engineered Mix Design
- Performance-Related Specifications
- Concluding Remarks

Performance Specifications Strategic Roadmap: A Vision for the Future *Federal Highway Administration* (2004)

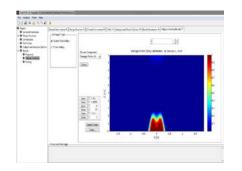
- Vision: The performance of highway facilities will improve through better translation of design intent and performance requirements into construction specifications.
- Mission: To establish performance specifications as a viable contract option.
- "Freedom to innovate with accountability to deliver is the driving force behind the performance specification movement." - Ted Ferragut, TDC Partners, Ltd

What is PASSFlex?

- System of "tools" for asphalt mix design, pavement design, and performance-related specifications
 - Test methods using Asphalt Mixture Performance Tester (AMPT)
 - Mechanistic models
 - Software programs
- Based on fundamental engineering principles
 - Seamless integration of mix design, pavement design, and PRS
 - Efficient testing to cover a wide range of loading and environmental conditions


Distresses Covered

- Fatigue cracking (bottom-up and topdown)
- Thermal cracking
- Rutting
- Aging


PASSFlex

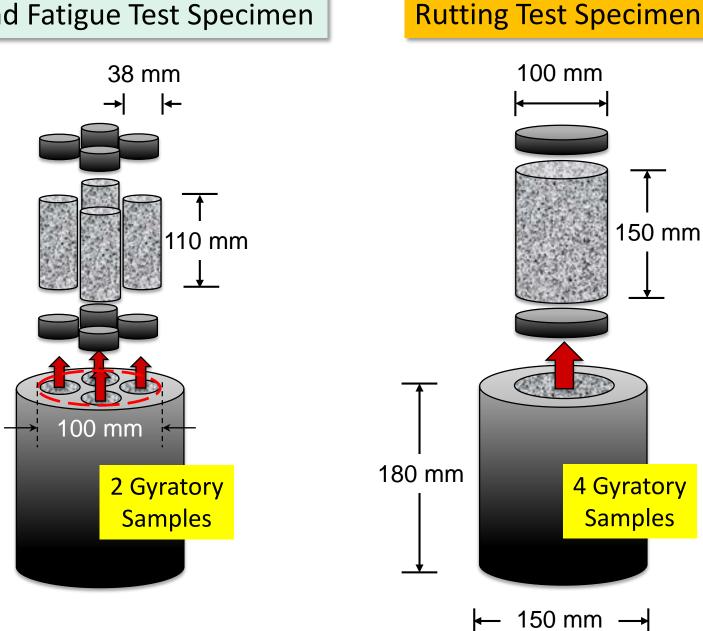
FlexMAT[™]

FlexPAVE[™]

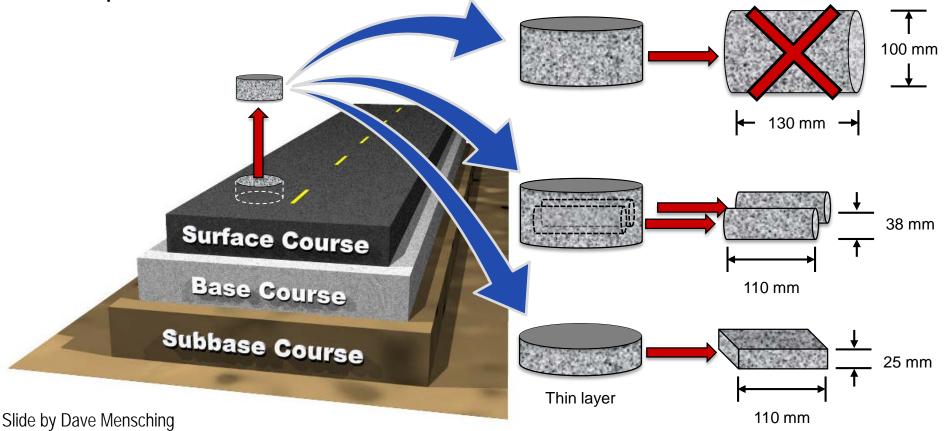
FlexMIX

Mixture Testing System Mixture Analysis Program Pavement Performance Analysis Program

AMPT Test Methods


Asphalt Mixture Performance Tester

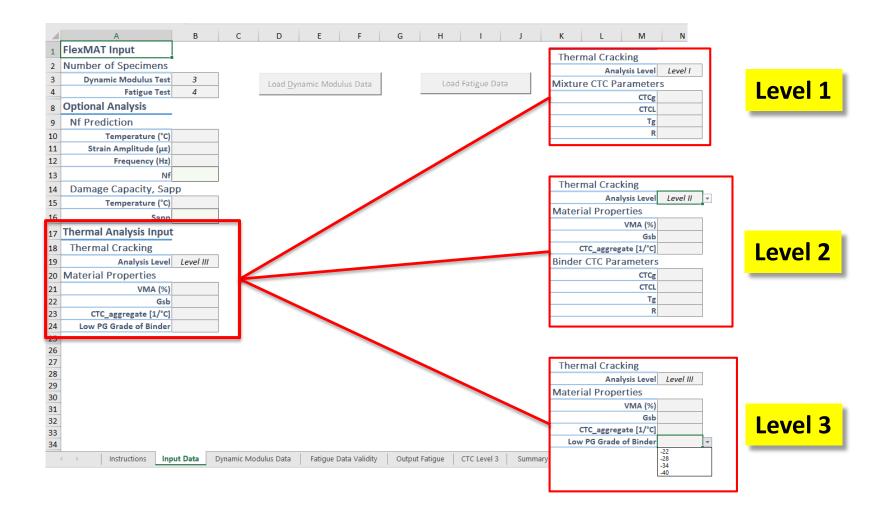
AMPT Performance Testing Suite


Test Method	AASHTO Spec.	Specimen Geometry	Material Properties	Index Parameter	Required Testing Time
Dynamic Modulus Test	PP 99/TP 132	38 mm D, 110 mm H	E* , phase angle, t-T shift factor	N/A	8 hrs
Cyclic Fatigue Test	PP 99/TP 133	38 mm D, 110 mm H	Damage characteristic curve, D ^R failure criterion	S _{app}	5 hrs
Stress Sweep Rutting Test	TP 134	100 mm D, 150 mm H	Shift model coefficients	ATR	8 hrs

E* and Fatigue Test Specimen

38 mm Specimen from Field Cores

- Asphalt concrete layers are generally thinner than 100 mm
- Allow for performance testing individual layers of as-built pavement



FlexMATTM

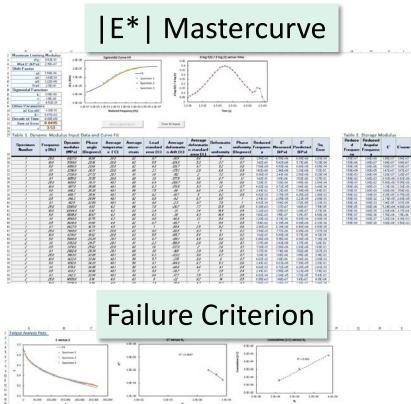
Single Click Data Loading/Clearing

1	A	В	c		D	E	F		G	н	1	J	к	L	M	1	N	0
1	FlexMAT Input																	
2	Number of Specimens			-														
3	Dynamic Modulus Test	1		1	Load D	ynamic Me	solution Page			Load	Fatigue Dat	-		Clear	All Inputs			
4	Fatigue Test	4			coso <u>P</u>	Arrentine too	Jourus 178	10		Toolo	is a Marcina	(8)		2.000				
8	Optional Analysis			-														
9	Nf Prediction																	
10	Temperature (°C)																	
11	Strain Amplitude (µɛ)																	
12	Frequency (Hz)																	
13	Nf																	
14	Damage Capacity, Sapp																	
15	Binder PG																	
16	Sapp																	
17	Thermal Analysis Inputs																	
18	Coefficient of Thermal Cor	tractio	n, CTC															
19	Analysis Level	Level I																
20	Mixture CTC Parameters																	
21	CTCg																	
22	CTCL																	
23	Тв	<u>[</u>																
24	R		10															
25	Aging Analysis Input																	
26	Analysis Level	Level II																
27	Binder STA Dynamic Shear M	Nodulu	s at 10) rad	l/s (RT	FO Aging	g)											
28	Testing Temperature (°C)	64																
29	Dynamic Shear Modulus (Pa)																	
30	Binder LTA Dynamic Shear M	Aodulu	s at 64	°C,	10 rad	/s (RTFO	& PAV	Aging)										
31	Aging Level	PAV	2xP	AV														
32	Dynamic Shear Modulus (Pa)	1																

Hierarchical Input Structure

FlexMATTM Analysis

2 Table 4. R

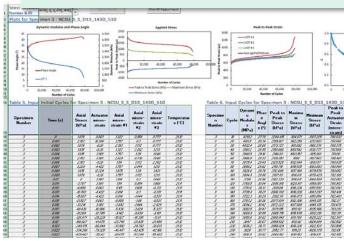

Parame

Average T

able 9. Model Fit for High Te

EVP

5.285.03


NF log (NF) GR log(Gr)

..... -----

.......

1	100.00			1. C.				
. 1	10.00		1					
a - 11	2.05-04							
· .	1.000							
	3.05-04							
	10.00							
_	0.02-081	2.02-04	415-04	6.02-04	8.02-04			
1.00-05								
	Table 9	CVIS	Data for A	8 Specime	05			
Selve	C	8	C	5	C	5	C	S
Seene	Ex.	Fit.	Specimen	Specimen	Specimen	Specimen	Specimen	Specimen
	1.008 +00	0.006-00	1006-00	0.00€-00	1006+00	2.306-300	1.006-00	0.00€+00
	9.646.41	1006-02	8738-01	4.575-00	8.636-01	4.908-00	8-516-01	4.542-00
	0.4167-01	2.908-02	8,2% .01	8126-03	8.98.41	8.525-03	7 INE-01	9736,02
	9.278-01	1.008-07	2 556-01	1425-04	7.468.01	1428-04	7.628-01	1208-04
	3.86.01	1008-03	7.046-01	1358-04	7.146-01	1716-04	7.346-01	1542-04
	8.756-14	2638-00	6.048-01	2.256-04	7.008-06	2.082+04	6.825.48	2178-04
	7.548-01	128.44	6.052-01	3 355,404	6.536.01	2675-04	6.645-01	3.000-04
	6,748,411	2836-04	4.416.42	138-04	8.238.40	3.356+04	6256.41	3,205,404
	6.802.00	1982-04	6.816-01	2.648-04	6.028-00	2.015-04	5.555-01	3992-04
	6.638-01	1275-04	6.305.01	4.238+04	5.742.01	4416-04	6.7%2.41	4.4.8.04
	6,248-01	8.508-04	6.706-61	4.028.404	5.636.41	4.036-04	5.606-01	4.318-04
	4.950-01	1225-04	5.436-01	5.442-04	5 396-01	5.452-04	2412-01	5.425-04
	4.248-01	1058-58	\$.32E-01	5.95E-04	\$ 218.41	5.94E-04	6.24E-01	5.535-04
	2 916-01	1182-05	1.10801	6.428-04	9.07E-01	5.445-04	1048-01	6.508.+04
	3.696-04	1028-08	6.826-69	6.536-54	4,9,35,-09	6.962-04	4.328-01	6.996-04
	3.438-01	1416-05	4.336-01	7.41204	4.796.40	7.646-04	4.716-01	7,416,+08
	3.1% -01	15/8+05	4746-01	7,948+04	4.658-01	7,916-04	4.850-01	7.906+04
	2.965-01	1780-05	4.628-01	0.440-04	4 528-01	5.435-04	4,530-11	0.456-04
	2.746-01	184(+05	4.436-01	8.908.404	4 405 .00	1.965-04	4.432.00	8 375+04
	25%-0	18.8-05	4,378-01	9.416-04	4,296-01	9468-04	4 305-01	9476-04
	2.306-01	2182-08	4.508-01	118-14	4,296-05	3106-04	4,2082-01	9.978-04
	2.948.41	2246-05	A 176.01	1.04E-05	4.076.01	1058-05	4.838.475	1056-05
	1956-01	2,376-08	4.062-01	1096-05	2,996,41	1006-08	A.04E.41	1106-05
	1768-01	2506-05	3.978-04	1145-05	3.478-06	1/58-05	3.98-01	186-18
	1598-01	2.636.405	2.886-01	128.405	3.7%6.45	104,9831	3.836-61	1206.405
	+		1.100-01	1236-08	3,706.46	1298-98	3742-01	125E-08
			1416-01	1296-05	3638.40	1296+05	3478-01	1305-05
			-2406.01	1.356-05	3.546.00	1246-05	3,546,41	1356-05
			158.44	1406-05	2,465,40	14/8-15	358.44	1406-05
			3.446.01	1456-05	3.39E-00	1455.05	3.582.01	1.652.05
		1	3,376-01	1052-05	3,208,40	1506-05	2296-0	1455-08

Damage Characteristic Curve

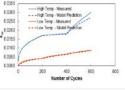
Rutting Shift Model

1.60E-04

7.3745-68 3.765-04 1.1995-0

er	Value	Loading Block	Temp (*C)	σ _v (kPa)	Total measured viscoplastic Strain	N _{wt}	Kef Model E _{ep} @N=N _{re} የ	Sq. Error	a _{ural}	Predicted B _{total}
("C)	51.15	Tcvp@N+200	51.15	758.4	1.715-02	206.00	1,798-02	1.1E (8	0.000	0.031
(°C)	31.08	T _{s_} cvp@N+400	51.15	551.58	1.825-02	251.21	1.828-02	0	-0.592	-0.760
	3.305-03	7,_cvp@N+600	51.15	965.27	3.90E-02	1260.66	3.60E-02	4.35 34	0.763	0.522
	0.26	T_cvp@N=200	31.08	551.58	4.285-03	2.82	4.286-03	7.86-19	-1.850	-1.892
	0.69	T_Ltyp@N=600	31.08	758.4	6.545-03	9.66	6.54E-03	7.58-35	-1.456	-1.483
TOT	5.888-07	1_0098+600	31.08	965.27	8.825-03	24.55	8.828-05	2.75-35	-1.129	1175

alcul	ation			ical Stre alculati	
(قما)	alo	ov (kPa)	aov @TL	aov @TH	log (ov/Pa
179	1.456	551.58	0.384	6.592	0.737
98.	0	758.4	0.000	0.000	0.376
		965.27	6.337	0.703	0.380


C vs S plot

Peak to Peak Average Strain Imicro-

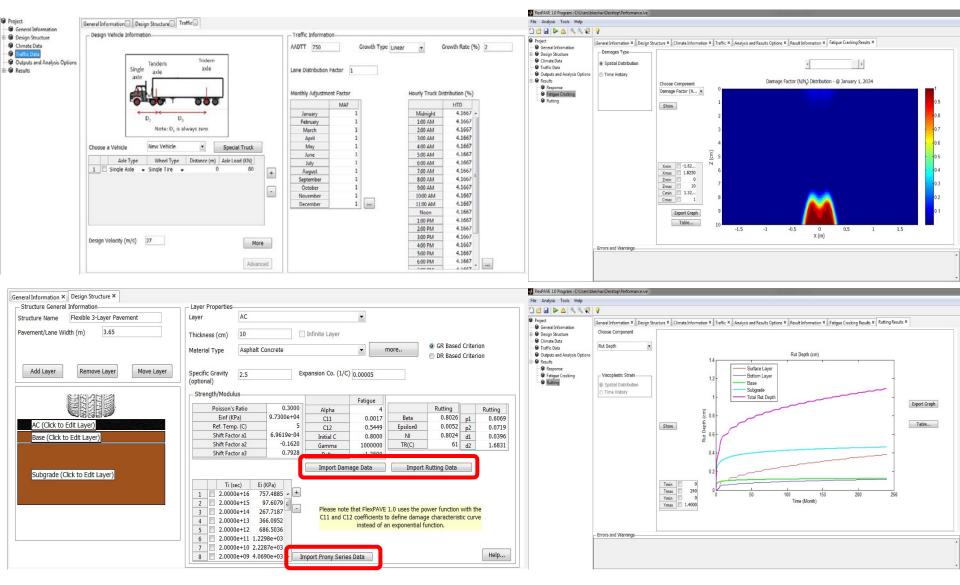
Peak to Peak Strain #1 Peak to Peak Strain #2 Peak to Peak Strain #3

Measured Vs Predicted Permanent Strain

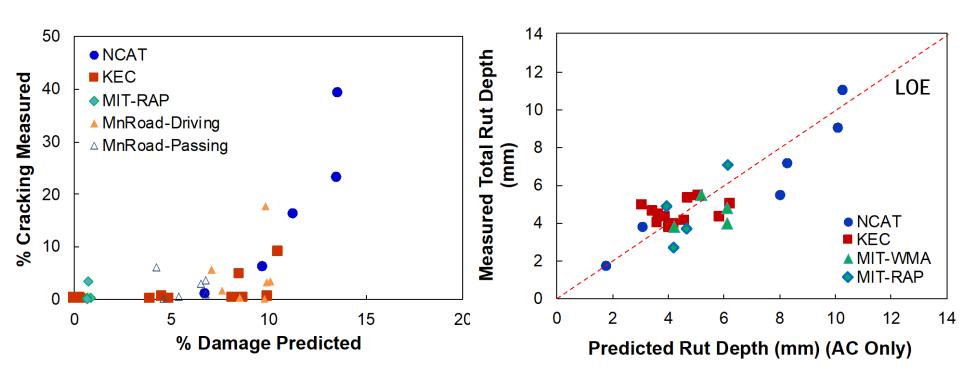
perature

Nred	Model	Cycle	EVD -	ANred	Nred	Model	Sq.	
mperature	Test Data	Table 1	D. Model	Fit for Lo	w Tem	perature Te	nst Data	

Model	Sq. Error	Cycle	EVP - Average	ANred	2
2.81E-03	5.56E-08	1	3.04E-04	0.01281	
3.76E-08	1.0695-08	2	4.715-04	0.01281	
4.38E-08	1.053E-09	3	6.00E-04	0.01281	
6.85E-03	1.3175-10	4	7.12E-04	0.01281	
5.24E-03	1.5715-00	5	8.11E-04	0.01281	
5.58E-03	3.636-09		8.996-04	0.91281	
5.88E-00	5.2970-09	7	9.836-04	0.01281	


Analysis Summary and Outputs

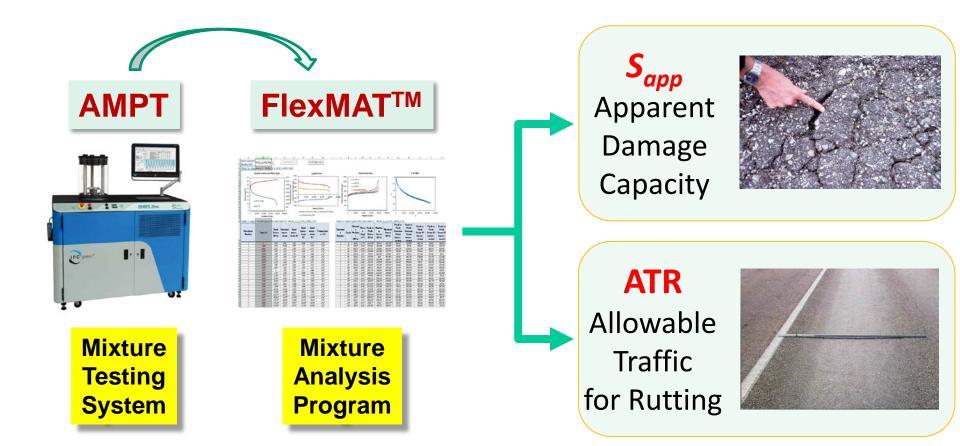
А	В		С	D	E	F	G	н	1	J
lexPAVE Dynamic M	odulus Inputs	_		Pavement ME Dynan	nic Modulus [Data				
Table 15. Linear	Viscoelastic	Pro	perties	Table 21. Pavem	ent ME Tab	ole Size		1		
Ein	a 3.48E+04]		Number of frequencies	Units	Values		Input	το	
Poisson's Ratio	0.30]		б	Hz	Default		•		
T _{REF} (°C) 21.10			Number of Temperatures	Units	Values		Paver	mont	
Shift Factor at	1.07E-03			8	Celsius	Default		гауе	nent	
Shift Factor a							L			
Shift Factor a				г	Table 22. D	ynamic Mo		*		
Table 16. 2S2P10		S				1	Frequ	iency (Hz)	1	
ė	5 1.61E+00				0.1	0.5	1	5	10	25
I	e 9.85E-02			-30.0	2.74E+04	2.94E+04	2.99E+04	3.11E+04	3.15E+04	3.21E+04
ł				-20.0	2.31E+04	2.48E+04	2.54E+04	2.70E+04	2.76E+04	2.83E+04
f	3 1.00E+12		nre (;	-10.0	1.73E+04	1.95E+04	2.04E+04	2.22E+04	2.30E+04	2.40E+04
E ₀₀ [MPa]			erat Isius	4	7.83E+03	1.06E+04	1.18E+04	1.45E+04	1.56E+04	1.70E+04
E ₀ [MPa]			Temperature (Celsius)	10	4.59E+03	6.94E+03	8.08E+03	1.09E+04	1.21E+04	1.37E+04
			F	20	1.66E+03	2.85E+03	3.54E+03	5.57E+03	6.62E+03	8.12E+03
Table 18. S-VECD	· ·			40	2.82E+02	5.05E+02	6.50E+02	1.17E+03	1.49E+03	2.05E+03
alpha		-		54	1.32E+02	2.24E+02	2.86E+02	5.11E+02	6.59E+02	9.20E+02
C11		-			1					
C12			Ex	port to FlexPAVE 2.0						
DF								.		
Sapr Fable 19. Thermal		1	Export Fle	exPAVE Dyn. Modulus Inputs		<u> </u>	xpor	t to Fl	lexPA	
стс	9.23E-06		Export	FlexPAVE Fatigue Inputs			•			
СТС	1.06E-05		Export	FlexPAVE Faugue Inputs						
T	s -2.53E+01	 \								
	4.70E+00									
ہ Table 20. Aging Pr	operties		Inc	IOV Dara	n n n r r					
Table 20. Aging Pr	coperties]	Inc	lex Para	mete					
Table 20. Aging Pr	c 1.508]	Inc	lex Para	mete	21				


۰.

FlexPAVETM

FlexPAVETM ver 1.1

Field Validation



Performance-Engineered Mix Design

Index-based PEMD

- Use index parameters to pass/reject volumetric mix design
- Predictive PEMD
 - Use predicted life to optimize aggregate gradation and asphalt content for the design air voids
 - Use performance-volumetric relationship (PVR) developed from 'four corners' of volumetric space
 - Developed PVR can be used to develop pay tables in PRS.

Index Parameters

Thresholds of *S*_{app}

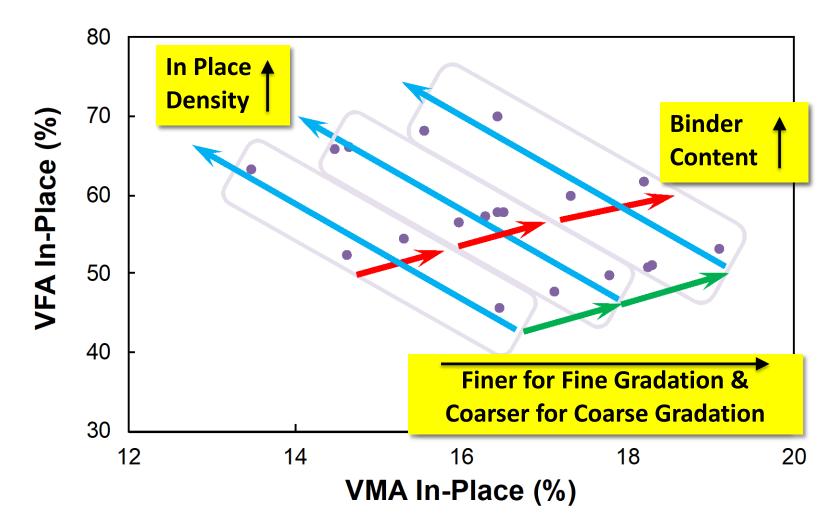
Traffic (million ESALs)	Sapp Limits	Tier	Designation
Less than 10	$S_{app} > 8$	Standard	S
Between 10 and 30	$S_{app} > 24$	Heavy	Н
Greater than 30	<i>S_{app}</i> > 30	Very Heavy	V
Greater than 30 and slow traffic	<i>S_{app}</i> > 36	Extremely Heavy	E

Thresholds of ATR

Traffic (million ESALs)	Tier	Designation
Less than 2	Light	L
Between 2 and 10	Standard	S
Between 10 and 30	Heavy	Н
Greater than 30	Very Heavy	V
Greater than 30 and slow traffic	Extremely Heavy	E

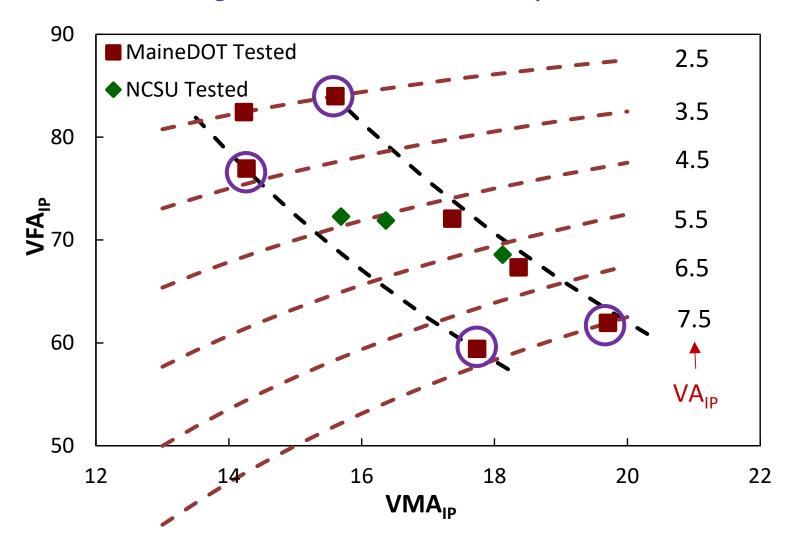
NC STATE UNIVERSITY

Project	Location	Mix	Rutting Allowable Traffic	Cracking Allowable Traffic	Allowable Traffic	Dominant Distress
	Machineter	Control	Н	S	S	Cracking
ALF	Washington DC	CR-TB	E	Н	Н	Cracking
	DC	SBS	E	V	V	Cracking
		AC-0.5%	E	S	S	Cracking
Maine -	Maine	AC-Target	V	S	S	Cracking
PEMD	iviaine	AC+0.5%	Н	S	S	Cracking
		AC+1%	S	Н	S	Rutting
		50RSB	L	Н	L	Rutting
	Manitoba,	С	L	S	L	Rutting
MIT-RAP	Canada	15R	L	Н	L	Rutting
		50R	L	Н	L	Rutting
		Advera	L	S	L	Rutting
MIT-	Manitoba,	Control	L	S	L	Rutting
WMA	Canada	Evotherm	L	S	L	Rutting
		Sasobit	L	S	L	Rutting
		RB25.0B	E	S	S	Cracking
NC DOT -	Newth	RI19.0B	S	L	L	Cracking
ABC	North	RI19.0C	V	S	S	Cracking
Project	Carolina	RS9.5B	L	S	L	Rutting
		RS9.5C	V	S	S	Cracking
ИГС	Karaa	ASTM	L	S	L	Rutting
KEC	Korea	ΡΜΑ	V	S	S	Cracking

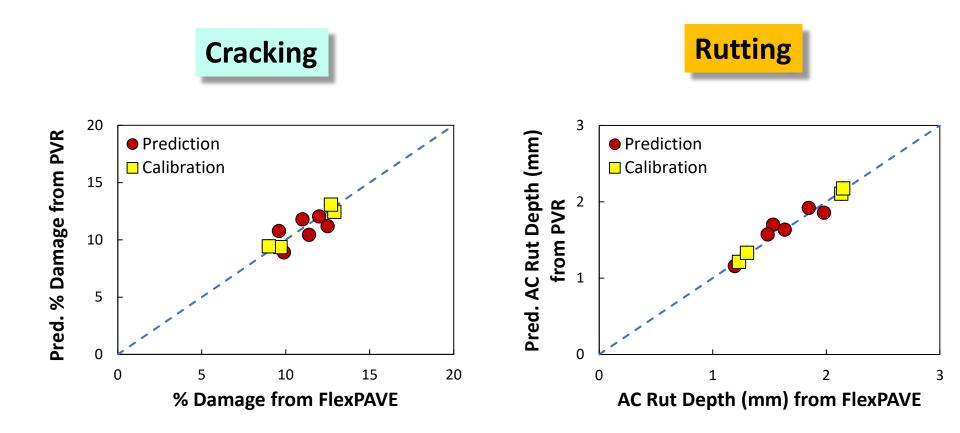

Performance-Volumetric Relationship (PVR)

Functions to predict the pavement performance using measurable Acceptance Quality Characteristics (AQC's).

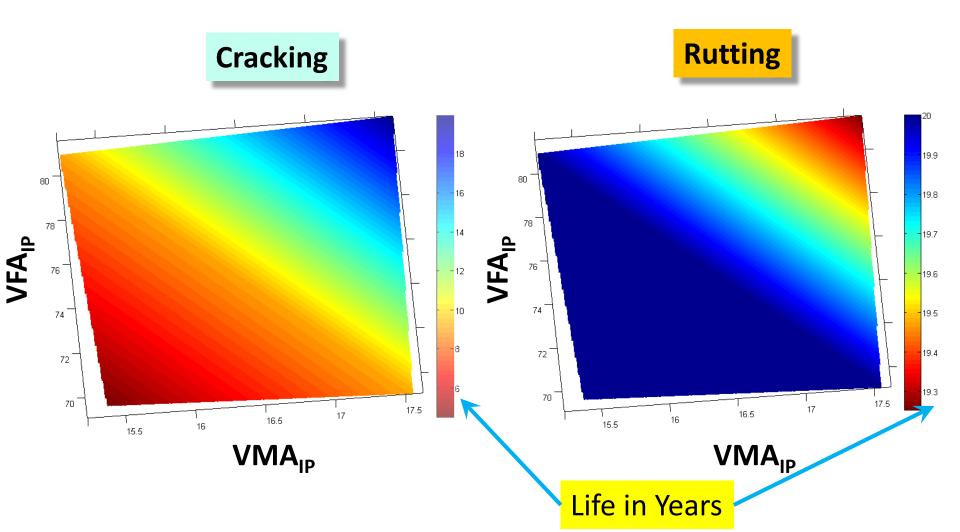
PVR $Performance = f(VMA_{IP}, VFA_{IP}, \%AC_{eff})$

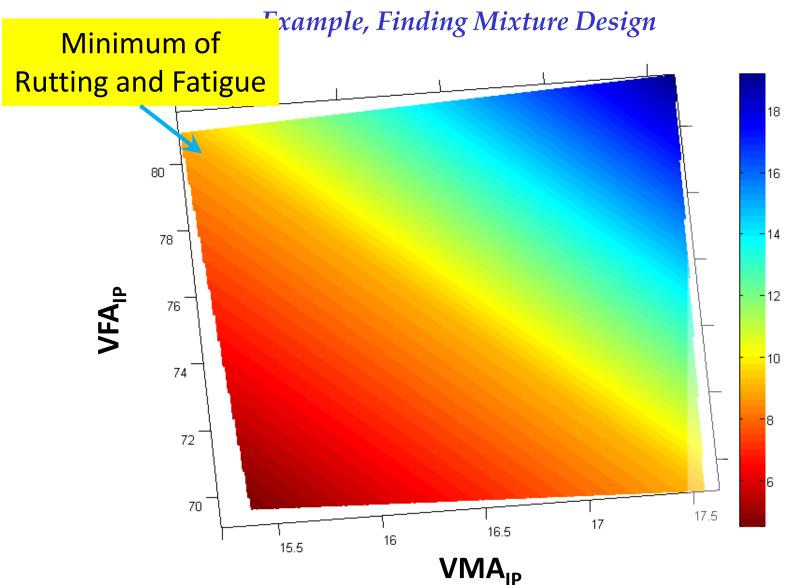

Allows to use the current QA data collection methods in PRS applications

Analysis in Volumetric Space


Selection of PVR Calibration Conditions

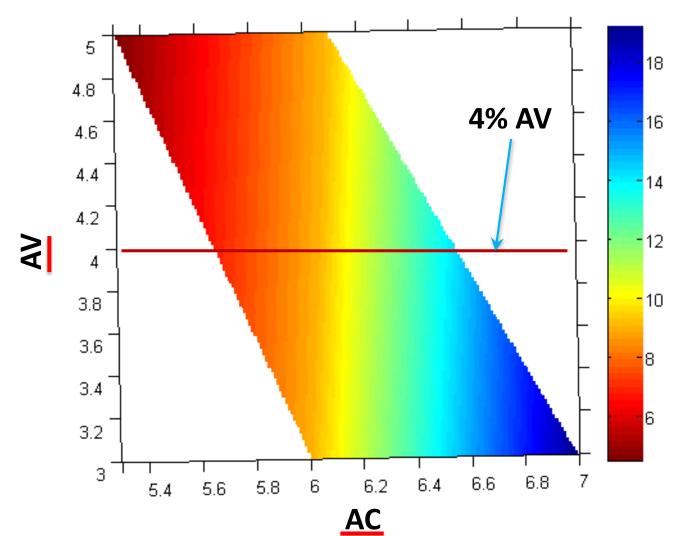
Findings with Maine Shadow Project Mixture

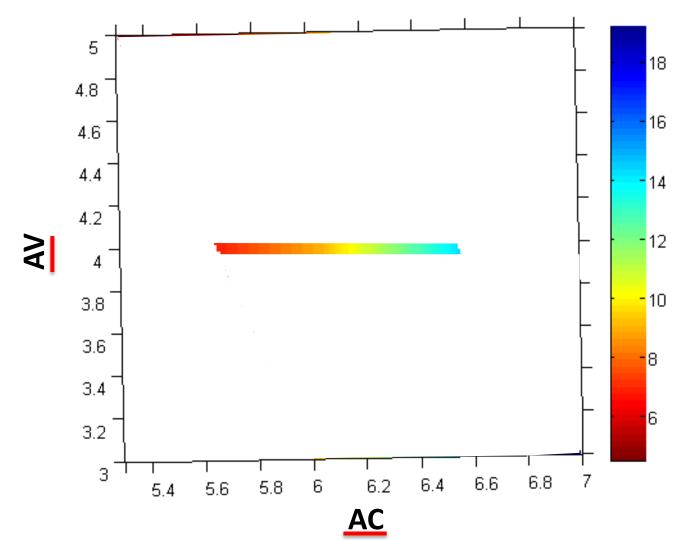


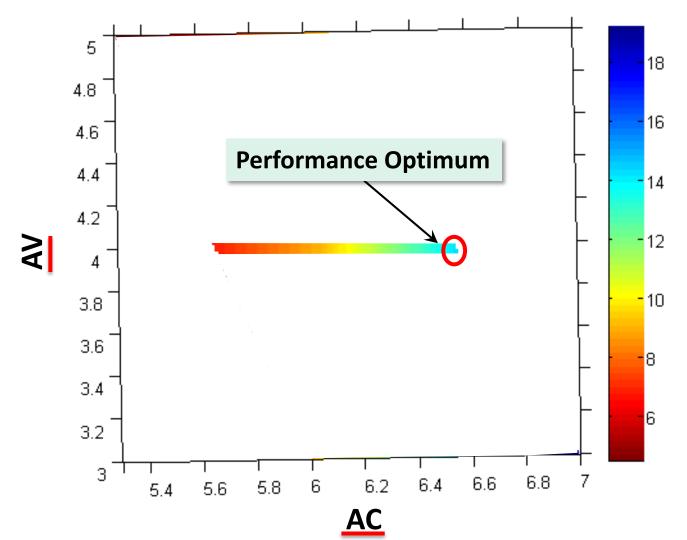

Selection of PVR Calibration Conditions

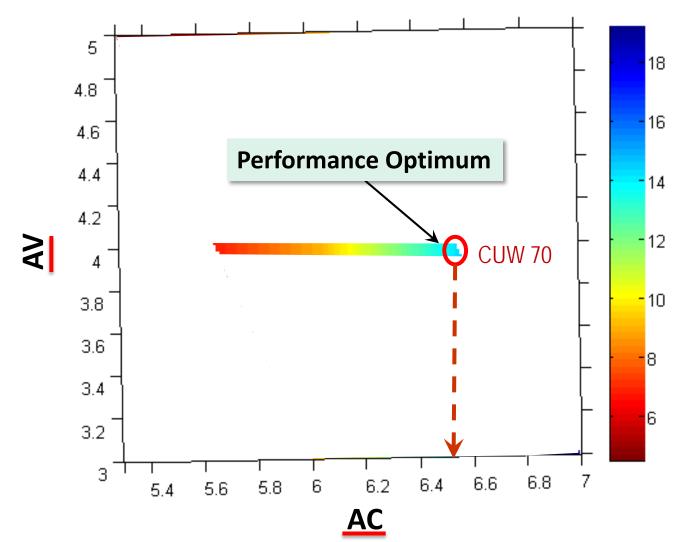
Findings with Maine Shadow Project Mixture

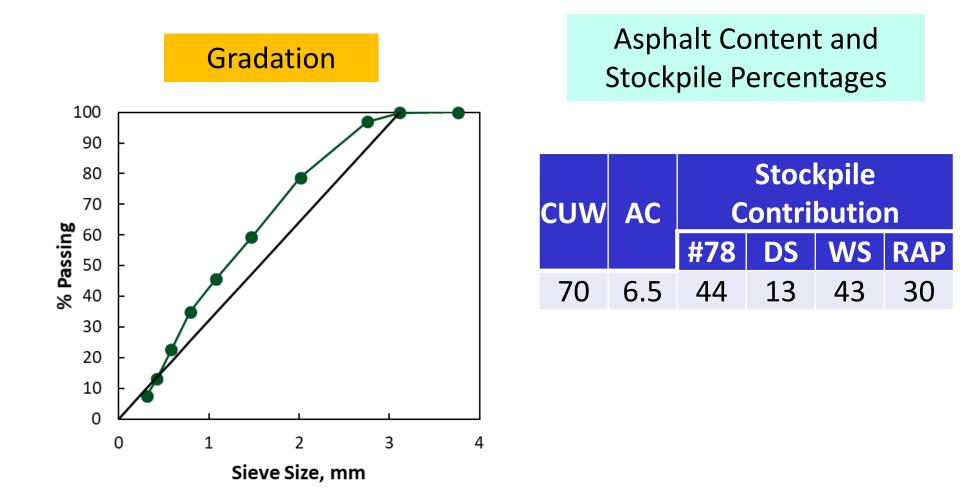
Example, PVR Function Predictions

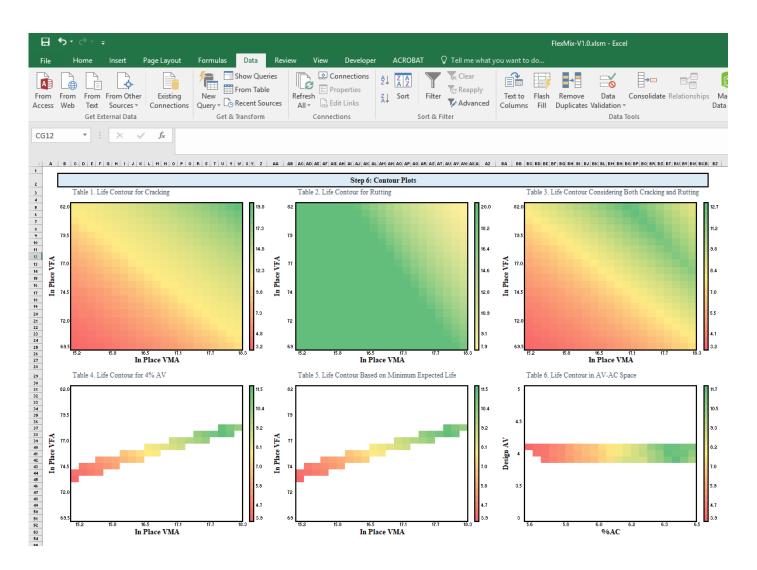



Example, Finding Mixture Design


Example, Finding Mixture Design

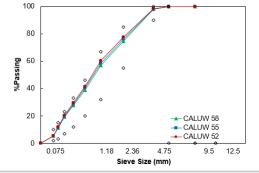

Example, Finding Mixture Design


Example, Finding Mixture Design


Example, Finding Mixture Design

Example, Final Mixture Design

FlexMIX for PVR Analysis


Automatic Determination of Optimal Gradation and Binder Content

CE CF CG CH CI CJ CK CL CM CN CO

Step 7: Candidate for Optimum Design

%CALUW:	58	-	52
Pb:	6.0	-	б.4
		%AC	Life
CALUW 52	2	6.4	11.5
CALUW 55	5	6.2	9.8
CALUW 58	3	б.0	8.1
AU @ MA	4.0		4.1
AV @ Ndes:		-	
VMA @ Ndes:	18.0	-	17.2
VFA @ Ndes:	77.6	-	76.4
Design Airvoid		Toleranc	e
4		0.1	

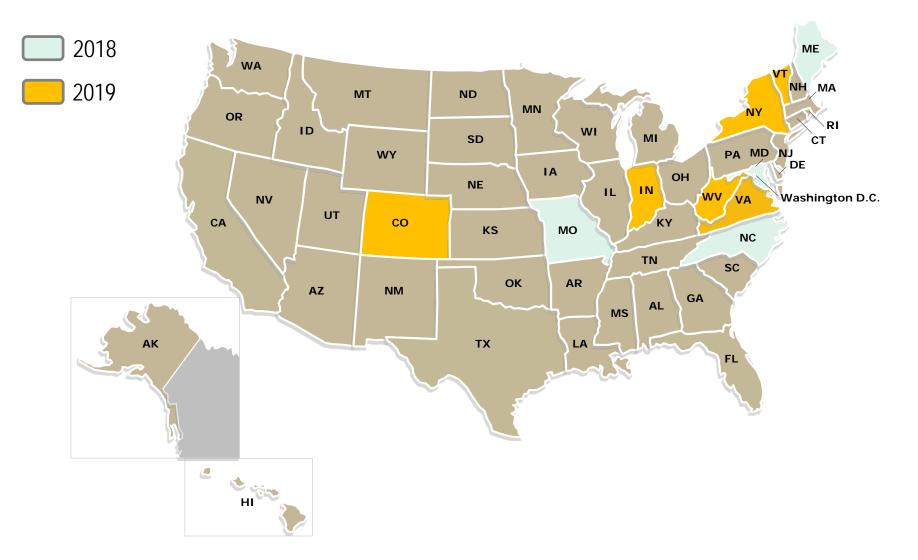
		%Passing				
Sieve Size (mm)	Size ^ 0.45	CALUW 52	CALUW 55	CALUW 58		
19.0	3.76	100.0	100.0	100.0		
12.5	3.12	100.0	100.0	100.0		
9.5	2.75	98.2	98.1	97.9		
4.75	2.02	77.5	76	74.6		
2.36	1.47	60.4	58.5	56.8		
1.18	1.08	41.6	40.3	39		
0.600	0.79	29.5	28.5	27.7		
0.300	0.58	20.5	19.8	19.2		
0.150	0.43	11.8	11.4	11.1		
0.075	0.31	5.6	5.4	5.3		

	#78	DS	WS
CALUW 52	32.2	26.7	41.1
CALUW 55	34.4	25.8	39.8
CALUW 58	36.5	25.0	38.5

Example Pay Tables in PRS

Pay Factor		QA VMA @ Ndes = 13%				
		QA Vbe @ Ndes				
		11	10	9	8	7
	4	101.5	100.0	100.0	93.9	67.3
In-Place A.V.	5	100.3	100.0	100.0	84.9	60.0
	6	100.0	100.0	96.3	73.7	0.0
	7	100.0	100.0	88.2	60.0	0.0
	8	100.0	97.1	78.3	0.0	0.0
	9	100.0	89.8	65.9	0.0	0.0
	10	96.1	80.8	60.0	0.0	0.0
	11	89.3	69.7	0.0	0.0	0.0
	12	81.1	60.0	0.0	0.0	0.0

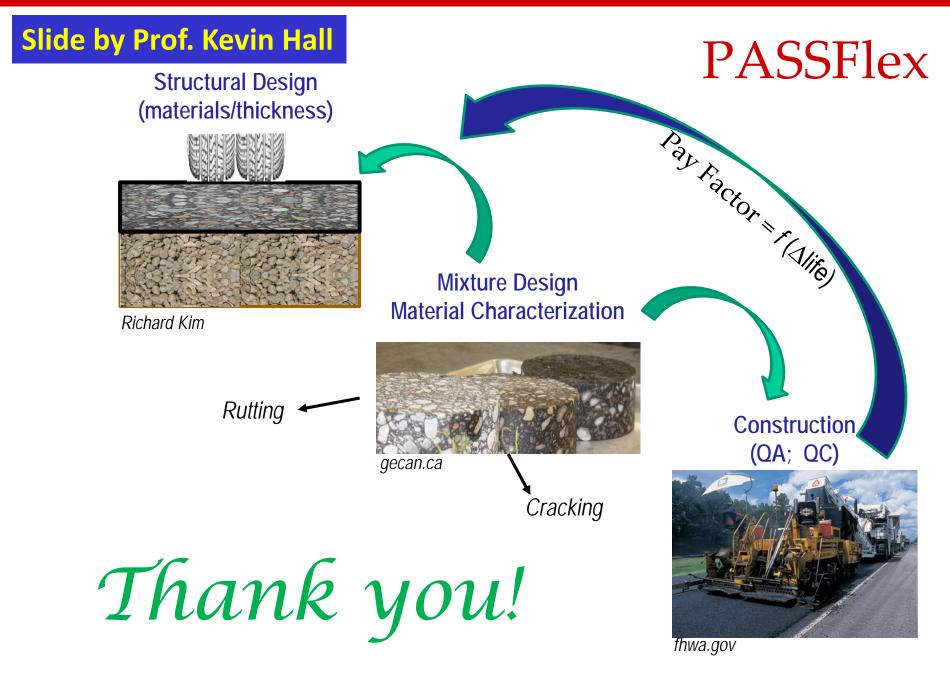
Pay Factor		QA VMA @ Ndes = 15%				
		QA Vbe @ Ndes				
		11	10	9	8	7
	4	101.6	102.4	102.6	102.0	100.2
	5	100.8	101.6	101.7	100.8	100.0
	6	100.0	100.7	100.6	100.0	100.0
	7	100.0	100.0	100.0	100.0	100.0
In-Place A.V.	8	100.0	100.0	100.0	100.0	98.1
	9	100.0	100.0	100.0	100.0	90.9
	10	100.0	100.0	100.0	97.6	82.0
	11	100.0	100.0	100.0	90.9	70.9
	12	100.0	100.0	95.1	82.7	60.0


Pay Factor		QA VMA @ Ndes = 14%					
		QA Vbe @ Ndes					
		11	10	9	8	7	
4		102.3	102.1	101.0	100.0	100.0	
In-Place A.V.	5	101.4	101.1	100.0	100.0	95.5	
	6	100.4	100.0	100.0	100.0	87.1	
	7	100.0	100.0	100.0	97.3	76.6	
	8	100.0	100.0	100.0	89.7	63.5	
	9	100.0	100.0	97.5	80.3	60.0	
	10	100.0	100.0	90.5	68.6	0.0	
	11	100.0	95.8	81.9	60.0	0.0	
	12	97.3	89.2	71.4	0.0	0.0	

Pay Factor		QA VMA @ Ndes = 16%					
		QA Vbe @ Ndes					
		11	10	9	8	7	
In-Place A.V.	4	100.0	101.4	102.4	102.9	102.6	
	5	100.0	100.6	101.6	102.0	101.6	
	6	100.0	100.0	100.8	101.1	100.5	
	7	100.0	100.0	100.0	100.0	100.0	
	8	100.0	100.0	100.0	100.0	100.0	
	9	100.0	100.0	100.0	100.0	100.0	
	10	100.0	100.0	100.0	100.0	100.0	
	11	100.0	100.0	100.0	100.0	97.4	
	12	98.0	100.0	100.0	99.3	90.9	

Shadow Project

- Two-day AMPT hands-on training workshop at NCSU
- On-site training at the shadow agency's lab
- Proficiency testing
- Mix design using PEMD
- Development of life tables using PVR
- Collection of construction mix samples
- Comparison of PEMD-based PVR and PVR developed from construction samples
- Shadow PRS application


PRS Shadow Projects - USA

Concluding Remarks

- PASSFlex is a system of test methods, mechanistic models, and software programs.
- PASSFlex allows the integration of mix design, pavement design, and PRS.
- □ FlexMATTM, FlexPAVETM, and FlexMIX are available upon request.
- Southeastern states are welcome to participate in the shadow project!

NC STATE UNIVERSITY

