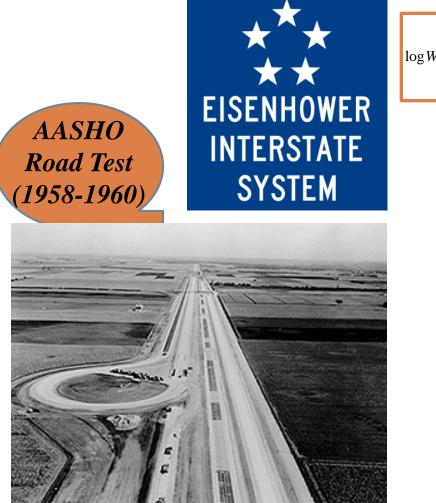
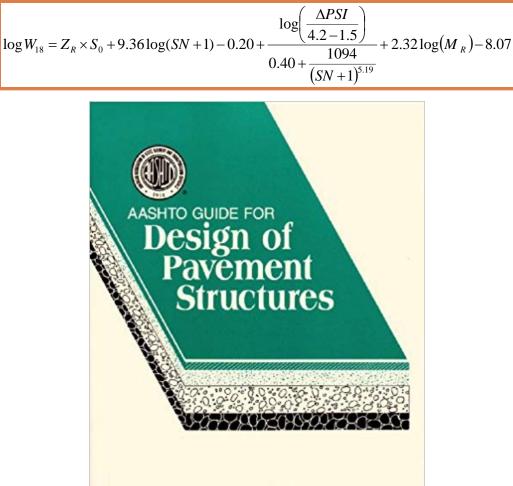
PREP-ME: AN MULTI-AGENCY EFFORT TO PREPARE TRAFFIC DATA FOR PAVEMENT ME DESIGN

Joshua Q. Li, Ph.D., P.E. School of Civil and Environmental Engineering Oklahoma State University giang.li@okstate.edu

October 10, 2019

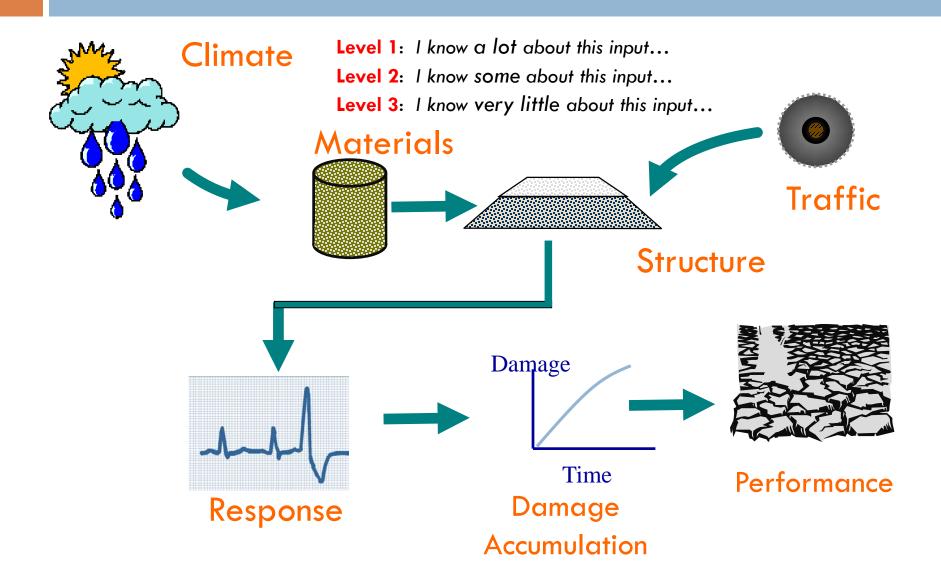
2019 Southeastern States Pavement Conference




Brief History: Pavement Design

Prep-ME: Development and Capabilities

Looking Forward: Future Plans


Brief History: Pavement Design

PUBLISHED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Pavement ME Design / MEPDG

Pavement ME Design

Image: Arizona Example: Project* Arizona Example: Project* Arizona Example: Project* Arizona Example: Project* General Information Design type: New Pavement Performance Crteria Linit: Reliability Arizona Example: Project* Pavement Structure Layer 1 Redde: Default asphat concrete Layer 2 Redde: Default asphat concrete Layer 3 Nonstabilized Base: A:16 Layer 4 Nonstabilized Base: A:14 Layer 5 Subgrade: A:15 Traffic opening: May 2013 Perement Construction: Aug 2 Non-stabilized Base: A:24 Layer 5 Subgrade: A:16 Special traffic loading for flexible pavements Perement Collocation Setting: Add Layer Remove Layer Add Layer Remove Layer Add Layer Remove Layer Add Layer S Remove Layer Acting: Layer 1 AC Rutting Standard Deviation 0.24*Pow(RUT.0.8026)+0.001 AC Rutting K2 (1) 1.5606 A Rutting K2 (1) 1.5606 A Rutting K2 (1) 1.5605 A C Rutting R3 (1) 2.2.35 A C Rutting R3 (2) 3.3 Click here to edit Layer 6 Subgrade: A-16 Click here to edit Layer 6 Subgrade: A-16						
General Information		Performance Criteria		Limit	Reliability	*
Design type: New Paveme	ent 🔻	Initial IRI (în/mile)		50		$\left[\right]$
Pavement type: Flexible Pave	ment 🔹	Terminal IRI (in/mile)		150	90	
Design life (years):	15 🔻	AC top-down fatigue cracking (ft/mile)		2000	90	111
Base construction: May 🔻	2013 -	AC bottom-up fatigue cracking (% lane a	area)	10	90	
Pavement construction June -	2013 -	AC thermal cracking (ft/mile)		250	90	
Traffic opening:	2013 -	Permanent deformation - total pavemen	t (in)	0.5	90	Ŧ
	le pavements	New Flexible Pavement-Calibration Set	tings			•
🛛 🏰 Add Layer 🗯 Remove Lay	er					
Click here to edit Layer 3 Non-si Click here to edit Layer 4 Non-si Click here to edit Layer 5 Subgra	tabilized Base	▲ AC Rutting AC Rutting Standard Deviation 0.24*Pow(RU ▲ AC Rutting - Layer 1 AC Rutting K1 (1) ✓ -2.55 AC Rutting K2 (1) ✓ 1.5606 AC Rutting K3 (1) ✓ 0.25 AC Rutting BR1 (1) ✓ 1 AC Rutting BR2 (1) ✓ 1 AC Rutting Layer 2 ✓ 1 AC Rutting K1 (2) ✓ -2.35 AC Rutting K2 (2) ✓ 1.5605 AC Rutting K3 (2) ✓ 0.3)+0.001	A III
	Design type: New Paveme Pavement type: Flexible Pave Design life (years): Base construction: May • Pavement construction: June • Traffic opening: July • Special traffic loading for flexib • Add Layer 🎇 Remove Layer Click here to edit Layer 3 Non-s Click here to edit Layer 4 Non-s	Design type: New Pavement Pavement type: Flexible Pavement Design life (years): 15 Base construction: May 2013 Pavement construction: June 2013 Pavement construction: June 2013 Traffic opening: July 2013 Special traffic loading for flexible pavements Add Layer Remove Layer Click here to edit Layer 3 Non-stabilized Base Click here to edit Layer 5 Subgrade : A-1-b	Design type: New Pavement Pavement type: Fexible Pavement Design life (years): 15 Base construction: May 2013 Pavement construction: July 2013 Pavement construction: July 2013 Traffic opening: July 2013 Special traffic loading for flexible pavements New Flexible Pavement-Calibration Set Pavement construction: May 2013 Traffic opening: July 2013 Special traffic loading for flexible pavements New Flexible Pavement-Calibration Set Mex Flexible Pavement-Calibration Set New Flexible Pavement-Calibration Set Click here to edit Layer 3 Non-stabilized Base AC Rutting Standard Deviation AC Rutting K1 (1) AC Rutting K2 (1) AC Rutting BR1 (1) AC Rutting BR3 (1) AC Rutting K1 (2) AC Rutting K1 (2) AC Rutting K2 (2) AC Rutting K3 (2) AC Rutting K3 (2) AC Rutting BR1 (2)	Design type: New Pavement Pavement type: Pexuble Pavement Design life (years): 15 Base construction: May 2013 Pavement construction: June 2013 Pavement construction: July 2013 Traffic opening: July 2013 Special traffic loading for flexible pavements New Fexble Pavement Calibration Settings Add Layer Remove Layer Click here to edit Layer 3 Non-stabilized Base AC Rutting Standard Deviation 0.24*Pow(RU) AC Rutting K1 (1) -2.55 AC Rutting BR1 (1) 1 AC Rutting BR2 (1) 1 AC Rutting K1 (2) -2.35 AC Rutting K2 (2) 1 AC Rutting K1 (2) -2.35 AC Rutting K2 (2) 1 AC Rutting K2 (2) 1 AC Rutting BR2 (2) 1	Design type: New Pavement Initial IRI (n/mile) 50 Pavement type: Flexible Pavement 50 Design life (years): 15 Initial IRI (n/mile) 150 Base construction: May 2013 AC top-down fatigue cracking (t/mile) 2000 Pavement construction: July 2013 AC top-down fatigue cracking (t/mile) 2000 Pavement construction: July 2013 Permanent deformation - total pavement (n) 0.5 Pavement construction: July 2013 Permanent deformation - total pavement (n) 0.5 Pavement construction: July 2013 Permanent deformation - total pavement (n) 0.5 Special traffic loading for flexible pavements New Rextble Pavement-Calibration Settings Image: Pavement-Calibration Settings Image: Pavement Collection Setting Layer 1 AC Rutting K1 (1) Image: Pavement-Calibration Settings Image: Pavement Collection Setting Layer 3 Non-stabilized Base AC Rutting K1 (1) Image: Pavement-Calibration Collection Collecti	Design type: New Pavement Initial (RI (n/mile) 50 Pavement type: Flexible Pavement 50 Initial (RI (n/mile) Design life (years): 15 0 150 90 Base construction: May 2013 AC top-down fatigue cracking (t/mile) 2000 90 Pavement construction: July 2013 AC top-down fatigue cracking (t/mile) 2000 90 Pavement construction: July 2013 Permanent deformation - total pavement (n) 0.5 90 Traffic opening: July 2013 Permanent deformation - total pavement (n) 0.5 90 Special traffic loading for flexible pavements New Rexible Pavement Calibration Settings New Rexible Pavement Calibration 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Pow(RUT,0.8026)+0.001 AC Rutting Standard Deviation 0.24*Dow(RUT,0.8026)+

Pavement ME Design

) Level	I 1: Site Spec I 2: Regional I 3: Default s by Axle Typ		xport Axle File		Cumulative Dis Distribution		Axle Types Single Axle Tandem A Tridem Axl Quad Axle	xle e
		Veh. Class	Total	3000	4000	5000	6000	700
Ji	anuary	4	100.00	1.8	0.96	2.91	3.99	6.8
J	anuary	5	100.00	10.05	13.21	16.42	10.61	9.22
Ji	anuary	6	100.00	2.47	1.78	3.45	3.95	6.7
Ji	anuary	7	100.00	2.14	0.55	2.42	2.7	3.21
Ji	anuary	8	100.00	11.65	5.37	7.84	6.99	7.99
	anuary	9	100.00	1.74	1.37	2.84	3.53	4.93
Ja	anuary	10	100.00	3.64	1.24	2.36	3.38	5.18
		11	100.00	3.55	2.91	5.19	5.27	6.32
Ji	anuary			0.00	2.29	4.87	5.86	5.97
ji Ji	-	12	100.00	6.68				_
یل بل بل	anuary		100.00	8.88	2.67	3.81	5.23	6.03

Axle load spectra: 12 months x 10 vehicle classes x 41 load bins x 4 axle types = 19,680 numbers !!!

Problem Statement

Extensive amount of data inputs

- Traffic: axle loading spectra instead of ESALs
- Climate: hourly climatic data
- Materials: dynamic modulus (E*), coefficient thermal expansion (CTE), resilient modulus (M_R)

Challenges of data availability, quality & process

- Availability: either not available or stored somewhere
- Data quality: data huge in size but poor in quality
- Data process: how to use limited available data for new designs at locations without historical data

Goals of Prep-ME

- Assist DOTs with data preparation for ME implementation and local calibration
- Improve management and workflow of input data for Pavement ME Design in a production environment
- Provide high quality input data sets that can be directly imported into ME Design in accordance with the XML formats

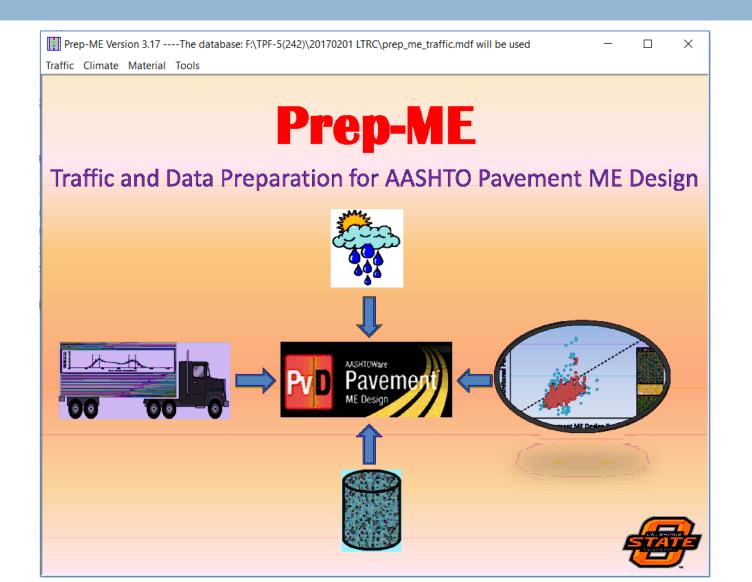
Prep-ME Memory Lane

- Initial development: AHTD/ARDOT 2006 2008
- TPF-5(242) Phase II: Traffic and Data Preparation for AASHTO DARWin-ME Analysis and Design, 2011
 2014
- TPF-5(242) Phase III: Training and implementation, 2015-2017
- Post Phase III: individual contracts with State Highway Agencies (SHAs), 2018-

Prep-ME User Group

Actively used: 13 States Software tested in: additional 10+ States

Prep-ME Capabilities

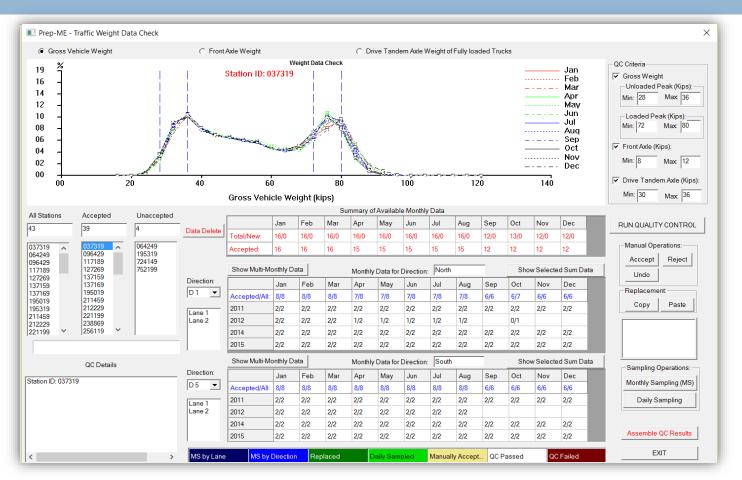

Traffic Module

Climate Module

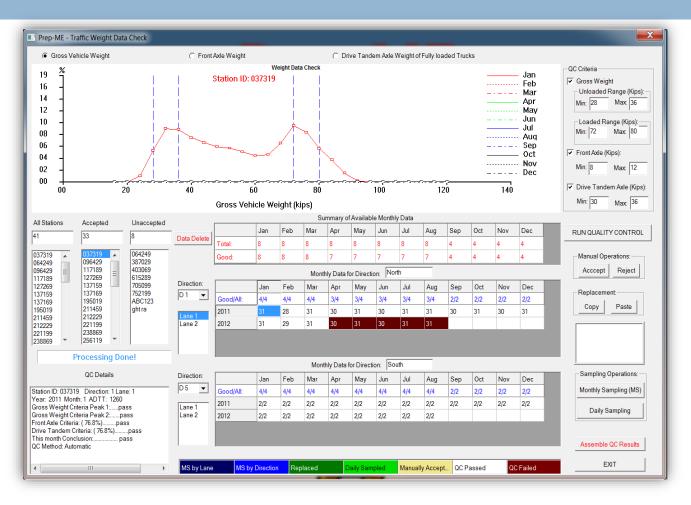
Material Module

Others and Future Development

Prep-ME Interface


Traffic Module

- Import & process raw WIM data (both 2001 & 2013 FHWA Traffic Monitoring Guide format) into SQL DB: parallel computing & DB techniques (dozens of GB in size in txt format)
- Implement algorithms and check WIM data quality: rigorous & flexible to meet various needs
- Generate loading spectra inputs for ME Design at any location using available WIM data: cluster analysis


Traffic Data Import

Import Traffic Data		-						
Last Time Import:						Select State:	Michigan	•
Select Import Folder	G:\2014-01-16, TRB Prep-N	ME\Test Data						
	-Import Status: Currer Station Data STA 1/1 Classification CLA 1/1 Weight Data WGT 1/1	nt/Total Files:	Imported (Rows): 920 147306 3015000	Stop Importing	· · · · · · · · · · · · · · · · · · ·			
Currently Import File:	G:\2014-01-16, TRB Prep-M	IE\Test Data\Apr20	011.WGT					
		N	Now Reading Weight	: Data From Hard	Disk. Please wait			
Total processing Time (s)							EXI	(T

- TMG QC automatically check data quality in batch mode (QC criteria customizable)
- Daily Sampling select good days when a month has some invalid data
- Monthly Sampling used when focusing on a particular time period
- Copy & Paste borrow data from one month to represent a missing month
- Manual Accept/Reject available if the standard QC is not suitable for a station
- Provide alternatives to investigate sites with low truck volume

Auto & manual operations: by station, by direction, by lane (for various checks and comparisons)

Review lanes for each month

Look for pattern change – by day & week

Load Spectra Export

Provide 3 levels of outputs (can be mixed)

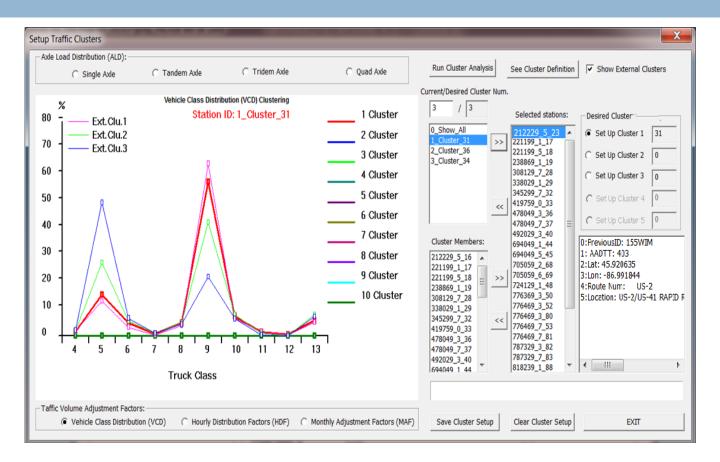
Level 2 clustering methods

- Michigan DOT method
- NCDOT method
- Kentucky method
- Nevada method
- Truck Traffic Class (TTC) method
- Simplified TTC method: low volume road
- Flexible method: manual clusters
- Modified LTPP TPF-5(004) method

Load Spectra Export

- Fully implemented C++ Ward-based hierarchical clustering algorithm
 - Allow users to evaluate existing clusters and define new clusters if necessary (such as with new data sets)
- Allow mixed three levels of traffic outputs
- Generate traffic input files for MEPDG (11 text files) and Pavement ME Design software (2 xml files)

Load Spectra Export – Level 1


Export Traffic Data			×
_			
Design Information			
Project Name: Test	Export Data To:	C:\Users\QiangJoshu	Ja\Desktop
GPS Coordinates (Option	al): Latitude : 42.7	Longitude :	-84.5
Output Level 1:	Select Data Type		
Site-Specific	O By Direction	By Satation	Auto
	Available WIM Stations:	Classification Stations Only:	
Output Level 2:		,	Initial Two-Way AADTT: 2589
MIDOT Method	037319	117139	
C MIDOL MELIOU	096429	137069	
NCDOT Method	117189	183029	Operational Speed (mph): 0
() Nebor Method	127269 137159	256309 256349	
KYTC Method	137159	397109	Number of Lanes in Design Direction:
C KYIC Method	195019	533269	Number of Lanes in Design Direction: 0
	211459	595249	
TTC Clustering	212229	638209	Percent Trucks in Design Direction (%): 52
Simplified TTC Cluste	221100	638409	
Simplified TTC Cluste	238869	645269	
Flexible Clustering	256119	724149	Percent Trucks in Design Lane (%): 94
C Flexible Clustering	256449	752199	5 ()
	271009	766069	
Output Level 3:	308129	787329	Traffic Growth (%): Compound,4.0 %
State Average	338029	807289	Traffic Growth (%): Compound,4.0 %
	345299	829799	
LTPP TPF-5(004)	387029		
Pavement ME Default	387049 403069		View Default Parameters
	419759		
	478049		
	170015	0%	
		U/o	
View Output Data	Output XML Files for Pavement ME	Design Output TXT F	iles for MEPDG Export Files for All Clusters EXIT

NCDOT Method – Level 2

Project specific VCD; Decision-tree based method: designer selects ALDF

Setup Clusters

Compare new data and new stations to research groups and identify new patterns

Traffic Module Summary

- High efficient data import: 2001 & 2013 TMG format; TMAS check
- Targeted QC evaluates weight measures that are relatively consistent
- Manage Data able to select the data used to generate statistics
- Clustering able to cluster data to identify patterns for each input with multiple methodologies

Climate Module

Import climate data

- Any climate data that comply with Pavement ME Design Hourly Climate Data (HCD) format
- Conduct preliminary data checks
- Interpolate ICM file for MEPDG and XML file for Pavement ME Design

Materials Module

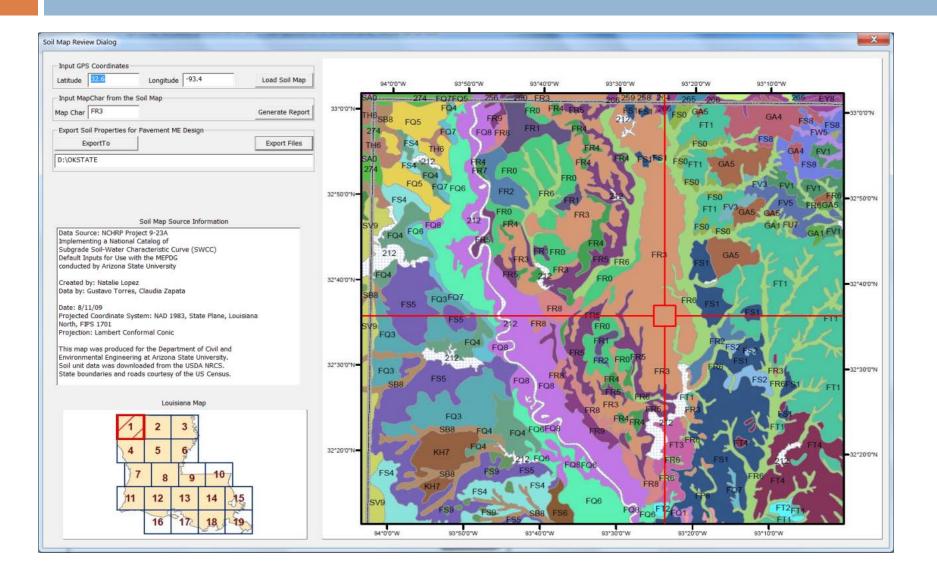
Retrieve material data from <u>statewide</u> <u>material library</u>

- HMA materials: dynamic modulus (E*)
- PCC materials: Coefficient of Thermal Expansion (CTE)
- Subgrade: Resilient modulus (M_R) from subgrade
 soil map data (NCHRP 9-23A)

Materials Module: E*

Catalog of E* data

- 3 nominal max agg sizes
- 3 binder grades
- 4 agg types
- 2 gradations
- 4 temperatures
- 5 loading frequencies

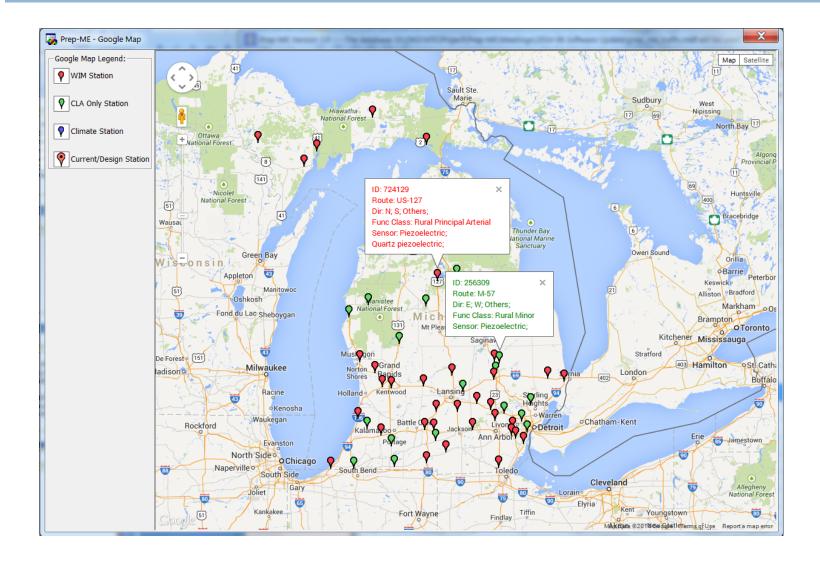


(Hall, 2007)

Materials Module: E*

etrieve HMA E*						×		
	Export Data To:		D:\OKSTATE					
Retrieving Pa	rameters							
Binder Grade	Binder Grade PG70-22 💌		Nominal Max /	Aggregate	12.5 mm	•		
Air Void Leve	Air Void Level Low (4.0% or 4.5%)			gate Type	Granite	-		
0	Generate Reports							
	E* (psi) Asphalt I	Binder \Mix Des	ign					
TEMP	0.1 HZ	0.5 HZ	1.0 HZ	5.0 HZ	10.0 HZ	25.0 HZ		
14	2787.9525	3230.6775	3413.5725	3784.15	3959.325	4227.75		
40	1602.325	2058.2775	2234.4625	2721.7	2950.47	3273.4525		
70	344.435	568.9175	693.6725	1049.235	1229.055	1505.925		
100	67.835	110.3275	141.0525	260	343.765	486.32		
130	27.525	37.5475	44.74	75.4725	99.0525	151.955		
				Export Fil	es	EXIT		

Materials Module: M_R


Materials Module: M_R

oil Properties for Pavement N	1E Design									X
Map Char	FR3									
Mapunit Key	667831									
Mapunit Name	Wrightsville-Kolin	Wrightsville-Kolin (s3012)								
Component Name	Wrightsville									
		Top Layer	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	
AASHTO Classification:		A-4	A-7-6	A-6						
AASHTO Group Index		3	19	13						
Top Depth (in)		0	16.9	48.8						
Bottom Depth (in)		16.9	48.8	72						Ξ
Thickness (in)		16.9	31.9	23.2						
% Component		30	30	30						-
Water Table Depth-Annual M	in (ft)	1.02	1.02	1.02						-
Depth to Bedrock (ft)		N/A	N/A	N/A						
STRENGTH PROPERTIES:										-
CBR from Index Properties		14.9	5.6	6.9						-
Resilient Modulus (psi)		14.5	7701	8774						-
										-
INDEX PROPERTIES:										
Passing #4 (%)		100	100	100						_
₹		07.5	100	07.5						

Other Capabilities

- Up-to-date Google Map v3.22 API
- Traffic file name change: those don't comply with the TMG name convention
- AADTT and VCD factors calculator: based on 24-h or 48-h short term count data
- State material library data import
- ALD to XML loading spectra converter

Other Capabilities

Future Plans

Implementation of Prep-ME for SHAs

- Customization and feature improvements
- Technical support

Automated/assisted local calibration module

- Develop functions to read ME analysis files into Prep-ME DB tables
- Import required performance data from state PMS, and LTPP database
- Automate many of the AASHTO (2014) local calibration steps, especially Step 7, 8, 9, 10, 11, which involve extensive computational & repeating efforts when additional & better data sets are available

How Prep-ME Can Be Used

- Traffic data collection engineers
 - To conduct effective traffic data QA/QC for various applications
- Pavement design engineers
 - To analyze axle loading data and select the best spectra among WIMs, national, and local defaults
 - To prepare all input data based on ME designated
 XML import format with minor efforts
- Improve the productivities of above operations tremendously

Thank You

Questions?

Joshua Q. Li, Ph.D., P.E. School of Civil and Environmental Engineering Oklahoma State University Email: <u>qiang.li@okstate.edu</u> Mobile: 405-332-1557