

We bring innovation to transportation.

VDOT Experiences with Traffic Speed Deflectometer Testing

Brian Diefenderfer, PhD, PE

Southeastern States Pavement Conference October 25, 2018

Overview

- 1. Background
- 2. Previous research
 - 1. FHWA
 - 2. SHRP2
 - 3. Pooled Fund Study, 2013-2017
 - 4. VDOT
 - 5. Pooled Fund Study, 2018-2021
- 3. Summary

Traffic Speed Deflectometer

- What is it?
 - A specialized truck with a 20-22kip rear axle load
 - Can measure traditional surface-observable condition
 - Doppler lasers measure deflection slope
- What can we do with it?
 - Assess the structural capacity of pavements at traffic speed (~50mph)
 - ...and measure rutting, ride quality, cracking, pavement and roadway images, cross slope

Benefits to Agencies

- Allow realistic production for network-level testing
 - Significant portions of a network can be covered daily
 - Include structural properties in PMS decision-making
- All this with...
 - Increased operator and public safety
 - Continuous (nearly) rather than discrete measurements

Background

- Pavement decision making
 - Based on surface observed distresses
 - Structural capacity data on a pavement network is rare
- Structural testing
 - Current state of the practice is FWD
 - Lane closures
 - Discrete data

Background

- FHWA study, 2011 & SHRP2 study, 2013
 - Identified several traffic speed deflection devices
- Benefits included
 - Continuous collection
 - Collection at near highway speeds
- Future work should study accuracy and analysis methods

Background

- FHWA study, 2012-2015 & TPF-5(282), 2013-2017
 - Focused on the devices identified previously
- Further studied TSDD data
 - Compared vehicle-measured pavement deflection with embedded sensors
 - Compared qualitative ranking of structural condition with FWD
 - Identified analysis parameters

TPF-5(282)

- Demonstrate network-level TSD testing
 - Two testing cycles
 - Two days per cycle
 - 9 agencies
- Agencies selected test routes

State	Miles
California	980
Georgia	646
Idaho	1,040
Illinois	400
Nevada	352
New York	595
Pennsylvania	567
South Carolina	726
Virginia	622
Total	5,928

TPF-5(282) Data Example

TPF-5(282) Data Example

TPF-5(282) Implementation Example

Idaho DOT Implementation Example

- Developing process for corridor management
- Combining network structural performance and ME performance predictions to estimate future maintenance schedules
 - Planned versus reactive maintenance

TPF-5(282) Findings

- Short- and long-term repeatability is good
 More work needed for temperature correction
- TSD and FWD followed similar trends
 - But not a one-to-one replacement as expected
- Little relationship between TSD results and PMS surface condition
 - Shows need for structural testing

2017 Testing in Virginia

- 4,000+ miles of testing on interstate and primary routes)
- Study impact to PMS results by including TSD-based structural response
- Deflection indices, rutting, ride quality, cracking, pavement and roadway images, cross slope

VDOT 2017, Remaining Work

- Identify strong vs weak sections and compare to PMS previous decision making and rehab history
- Determine ranges of calculated indices that identify good vs poor structural condition
 - Structural sufficiency vs design
 - Similar budget output from PMS
 - Combination?

Pooled Fund Study, 2018-2021

- TPF 5(385), Pavement Structural Evaluation with Traffic Speed Deflection Devices
- State partners
 - FHWA, Arkansas, Idaho, Illinois, Indiana, Kansas, Louisiana, Minnesota, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, Vermont

Pooled Fund Study Objectives/Scope

- Provide means to conduct demonstration testing
 ARRB Group TSD & Dynatest Raptor
- Develop specifications for data collection and guidelines for PMS application
- Demonstrate
 - How to use data to support project level decision-making
 - Costs (and any savings) through case studies
- Conduct workshops and prepare training

Pooled Fund Study Commitment Levels

- Option 1
 - Participation in the study for one agency rep (no testing) = \$15,000 / year
- Option 2a
 - Option 1 plus one day of testing on agency designated routes (~100-200 miles) = \$45,000 / year
- Option 2b
 - Option 2a plus additional days of testing = \$32,000 / day / year

Pooled Fund Study Status

- Project stated October 1, 2018
- Working with agencies for fall 2018 and spring 2019 testing
- Virginia
 - Likely one district per year and cover untested high priority routes within each

We bring innovation to transportation.

Thank you!

brian.diefenderfer@vdot.virginia.gov