

Minnesota Experience with GPR Based Rolling Density Meter

Shongtao Dai, MnDOT Kyle Hoegh, MnDOT Curt Turgeon, MnDOT

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

FHWA/AASHTO – Steve Cooper GSSI TTI MnDOT district materials and construct

MnDOT district materials and constructions

Why MnDOT is interested in?

- MnDOT Uses Cores Density for Acceptance
 - Need a tool for continuous assessment: RDM
- Longitudinal Joint deterioration
- Paver Mounted Thermal Profiling
- Intelligent Compaction
- RDM in 2015 with Maine and Nebraska

MnDOT Equipment

Push Cart Type RDM

Vehicle Mounted RDM

Equipment Calibration

High Density Polyethylene (HDPE)

Reported dielectric: 2.3-2.35

Footprint area of an antenna (Fresnel Zone)?

 $Fr \sim 0.5 v (tr/fc)^{1/2}$

GROUND SURFACE ANTENNA

D=12", Fr (Radius) ~ 3.6" (for 2.7Ghz-RDM)

RDM Principal

13 12 11 Lab Measured Air Voids (%) 10 $y = 2298.8x^{-3.361}$ $R^2 = 0.7291$ 9 Afton 8 $y = 18023x^{-4.919}$ Monticello $R^2 = 0.779$ 7 6 ٠ 5 4 3 4.5 5.5 5 6 4 **GPR** Measured Dielectric

Lab Measured Air Voids vs. Dielectric

Power (Afton)

Power (Monticello)

Mainline Survey: multiple \geq passes

Joint Survey: one antenna close to joint

Summary Field Use - Equipment Validation

Dielectric

6.5

0

4.0

Green-MnDOT with Vehicle Mounted RDM

Red – Consultant with Walking Cart RDM

Histogram

> Use histogram to assess uniformity and quality.

- All Data Collected
- Sampling Rate = 0.4 in/scan.
- > 26 million measurements
- Analysis based on 4 in.
- moving average
- Equivalent to >1 million cores
- Summary Stats
- 93.2% median density
- •STD: 1.18
- 97.5% locations density>90.8%

Examples: TH 52 – Left and Right Mainline

TH 52 – Longitudinal Joint

Top lift Mainline Average Density:

- Mat 93.5%
- Confined Joint 92.6%
- Unconfined Jnt 91.4%

TH 14 – Mainline

Comparison of Test Sections

> Mix B (3/4-) to A(1/2-): not much difference on compaction.

>Adding a roller: density slightly increased on this project.

GPR Asphalt Compaction: Roller Technique Evaluation

Group Name	Stationing range, ft.	Offset range, ft.	Color	Samples	Core Taken at 10 th %, Air Void Content
Roller Technique #1	920+00 to 925+00	Centered on Joint	Red	1000	9.6%
Roller Technique #2	935+00 to 940+00	Centered on Joint	Green	1000	7.7%

- Example 500 ft section where 2 different echelon breakdown roller techniques were used on the joint:
 - On-site RDM dielectric indicated greater compaction using technique 2
 - Core taken at 10th percentile indicated greater compaction in technique 2
- On-site dielectric can be used to give feedback as to what techniques are more effective for compaction

Summary Field Use: 2018 TH371 contractor experience – equipment validation

Good agreement between Contractor and MnDOT data: Median dielectric difference in swerve tests less than 0.05

Summary Field Use – Equipment Use

On-Site Feedback

- Contractor could identify low and high density locations
- R01 dielectric 4.1
- R02 dielectric 4.6
- Corresponded to 87.8% and 94.2% relative density respectively

Contractor RDM1 real time display

Core Locator for Implementation

Automatic to identify core locations at the end of each paving day

- > At low and high dielectric locations
 - Ex: 10% and 90%

Conversion from Dielectric to Air Voids: Core Locator App

Core Locations Output

1. Core Number

6. Lateral Offset (ft)

7. Dielectric

8. Northing

43.7338

- 2. Distance (ft)
- 3. Longitude (°)
 - Latitude (°) 9

1.3935e+04

5. Elevation (m)

4.

12 R95.1

9. Easting

-93.7007

355.8500

10. Stability Difference

	Core number	Distance (ft)	Longitude (°)	Latitude (°)	Elevation (m)	Lateral Offset (ft)	Dielectric	Northing	Easting	Stability Difference	Percentile
1	R84.1	9785	43.7403	-93.7140	357.9600	-0.5000	5.4851	1.8768e+05	5.6237e+05	0.0601	10
2	R85.1	11016	43.7384	-93.7101	357.6800	-2.5000	8.0004	1.8700e+05	5.6340e+05	0.0733	90
3	R86.1	1.2754e+04	43.7357	-93.7047	356.0600	-0.5000	5.4209	1.8603e+05	5.6484e+05	0.0538	10
4	R87.1	1.1433e+04	43.7378	-93.7088	357.3900	-2.5000	7.7417	1.8676e+05	5.6374e+05	0.0464	91
5	R88.1	1.4217e+04	43.7333	-93.6998	356.4300	-2.5000	5.4010	1.8516e+05	5.6614e+05	0.0148	9
6	R89.1	1.4348e+04	43.7331	-93.6994	356.7300	-4.5000	5.7936	1.8509e+05	5.6625e+05	0.0654	90
7	R90.1	1.0089e+04	43.7396	-93.7127	357.8700	0.5000	5.3488	1.8745e+05	5.6271e+05	0.0701	10
8	R91.1	9808	43.7401	-93.7136	357.9300	23	5.8927	1.8760e+05	5.6248e+05	0.0675	90
9	R92.1	1.1628e+04	43.7373	-93.7079	357.1600	0.5000	5.1195	1.8659e+05	5.6399e+05	0.0155	10
10	R93.1	1.0657e+04	43.7388	-93.7109	357.7600	4.5000	5.7674	1.8713e+05	5.6318e+05	0.0461	90
11	R94.1	1.3948e+04	43.7337	-93.7006	355.8800	0.5000	5.0702	1.8531e+05	5.6592e+05	0.0575	10

4.5000

5.5770

1.8531e+05

5.6591e+05

SHRP2 SOLUTIONS | 18

0.0051

89

- 11. Percentile
- Also saved as a .xlsx file

Summary Field Use – Core Locator

>automatically guide field person to the core location for coring

Conversion from Dielectric to Air Voids

SHRP2 SOLUTIONS | 20

Conversion from Dielectric to Air Voids: Laboratory Empirical

Conversion from Dielectric to Air Voids: Laboratory Empirical TH371

- All predictions
 based on gyratory
 pucks 10-1-2018
 through 10-6-2018
 predicted similarly
- Predictions based on 9-29-2018 under predicted air void content relative to others
- Field cores R01 and R02 from 10-1 confirmed October predictions

Activities

Calibration of Equipment

Field Testing:

- 2016: TH52 and TH14: Surveyed about 18miles.
- 2017: I35; Th52; Th22; Th60; CR86; Th110; CSAH13 and MnROAD
 - Hired American Engineering Testing (AET) to collect data
 - Educating consultant and contractors on this new technology
 - Testing application feasibility of vehicle mounted RDM system on construction projects.
- 2018: "Ghost" specification and core locator 1 or 2 projects TH47, TH14, TH109 and TH50 so far S-1 Work with GSSI on software improvements

Research on Laboratory Calibration

Gyratory Specimen

DIELCTRIC PROFILE METHOD

This write-up is to be used with MnDOT 2353 Ultrathin Bonded Wearing Course (UTBWC). 2360 Plant Mixed Asphalt Pavement and 2365 Stone Matrix Asphalt (SMA).

Delete the text under Section C Design Files and include Blank (i.e., C Design Files (BLANK) when project does not contain (2016) Quality Management - Paver Mounted Thermal Profile Method or (2016) Quality Management Special - Intelligent Compaction Method.

NEW 01/08/18 O NOT REMOVE THIS. IT NEEDS TO STAY IN FOR THE CONTRACTORS SP2018-XX

MnDOT 2353 Ultrathin Bonded Wearing Course (UTBWC), 2360 Plant Mixed Asphalt Pavement and 2365 Stone Matrix Asphalt (SMA) are modified with the following:

DESCRIPTION

This work consists of using the Rolling Density Meter (RDM) Method to continually monitor compaction efforts during asphalt paving operations.

The Advanced Materials and Technology Manual is available on the MnDOT Advanced Materials and Technology (AMT) Website at: http://www.dot.state.mn.us/materials/amt/index.html. The AMT Manual is a reference document and not a contract document.

Definitions

A.1 ADVANCED MATERIALS AND TECHNOLOGY MANUAL. A Department manual that contains best practices and examples related to the use of technologies such as the paver mounted thermal profile method, intelligent compaction method, automated machine guidance, rolling density meter method, etc.

AUXILIARY LANE. See MnDOT 1103 "Definitions". This provision is required only on continuous left turn lanes and passing lanes. Exclude auxiliary lane tapers, ramps, shoulders, cross-overs, noncontinuous turn lanes, loops, bypass lanes, acceleration/deceleration lanes and intersecting streets.

RDM is a good tool for mapping a continuous coverage of the relative compaction levels (higher dielectric = higher compaction)

Histograms and general statistics can be used to give a complete assessments of the in-place compaction

Immediate Feedback : Millions of Data Points

Potential Uses:

- Assess compaction density and uniformity for QC/QA.
- Provide on-site feedback to contractor of high and low compaction locations that they can cross-check with differences in mix or paving strategies in those locations to determine optimal construction procedures
- Identification of trends in the air void content maps that can be cross-checked with IC and other data to determine the most critical factors in achieving higher density

Thanks for your time and attention

Aggregate Source	% of mix	% of mix
Powers BA Sand	32	30
Powers 1/2 Rock	26	26
Powers Dust	12	12
Powers 5/8 Rock	0	0
Swenson 3/4 Rock	0	0
Rap	30	32

>Underlying layer effect on surface measurement?

How thick does the HMA layer need to be so that the underlying layer (agg. base) has no effects?

