
Design Catalog Based on AASHTO Pavement ME Design

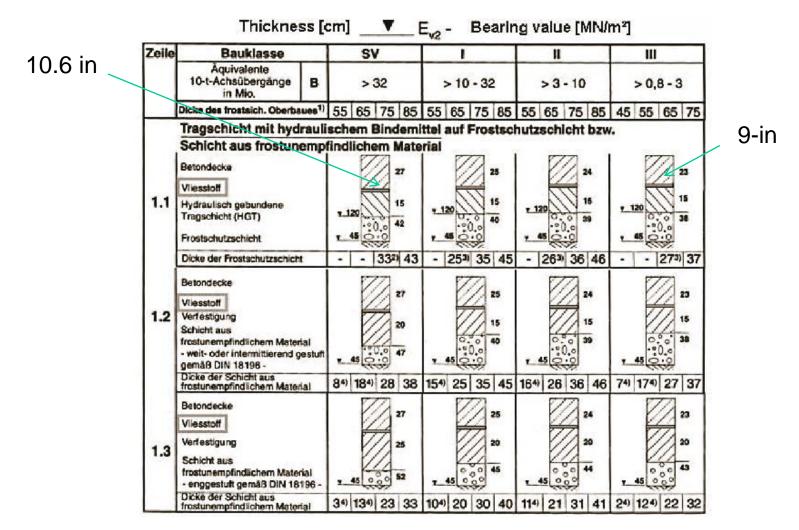
Image Source: FHWA

H. Thomas Yu, P.E. Federal Highway Administration Office of Infrastructure

October 25, 2018

Content

- Background
- Content of the Design Catalog
- Status
- Related work

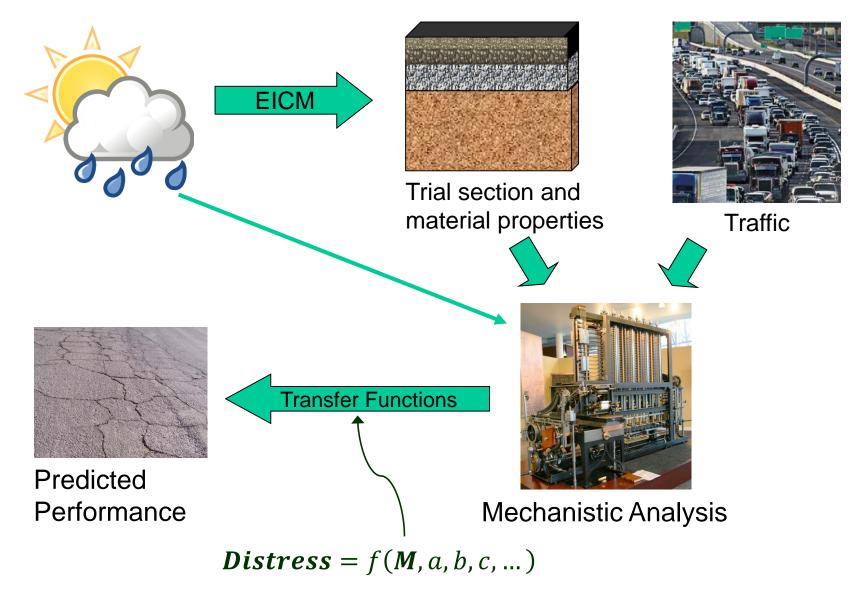

Rationale for the Design Catalog

- Promote best practices in pavement design
- Provide a tool for design checks
- Facilitate structural design
- Possible application in pavement-type selection evaluation

Recommendations from Scan Tour *High Payoff Items for Implementation*

- Two-Lift Construction (as per 1992 SCAN)
 Scarce quality aggregates for top lift only
 Recycled/marginal aggregates in lower lift
- Design Features Catalog (1992 SCAN)
 - Standard design features for different types of roads
 - Highlight features necessary for long-life pavements
- High Quality Foundations
 - Minimize/eliminate frost & swelling
 - Basics good pavements start with good foundations!

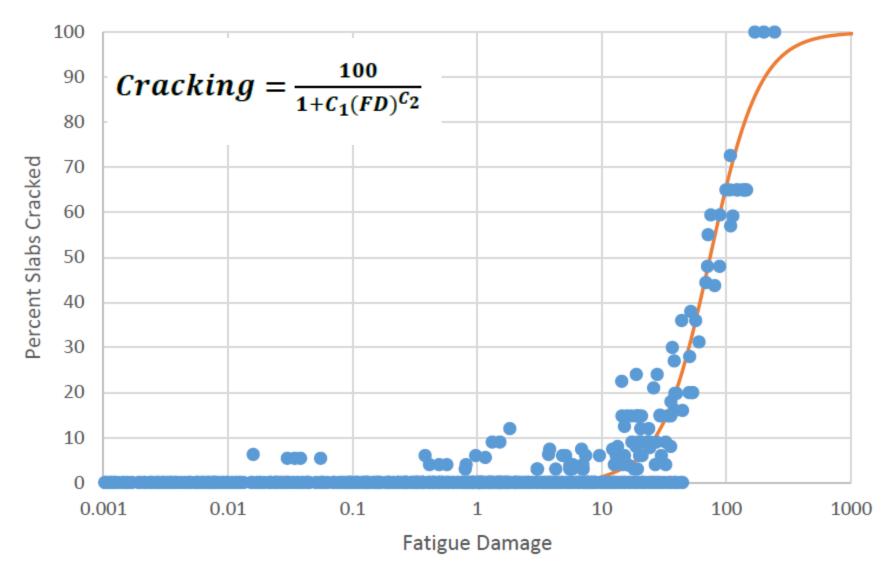
German Design Catalog for Concrete Pavement Alternatives


Image Source: Hall, K.T, et al, 2007. Long-Life Concrete Pavements in Europe and Canada. *Report FHWA-PL-07-027.*

German Design Catalog for Highways (>32 million ESALs)

27 cm concrete	26 cm concrete	30 cm concrete	Τ
15 to 25 cm hydraulically bound base	10 cm bituminous base	30 cm crushed stone base	90 cm total
48 cm frost blanket	50 cm frost blanket	30 cm frost blanket	

Image Source: Hall, K.T, et al, 2007. Long-Life Concrete Pavements in Europe and Canada. *Report FHWA-PL-07-027.*


ME Design Process

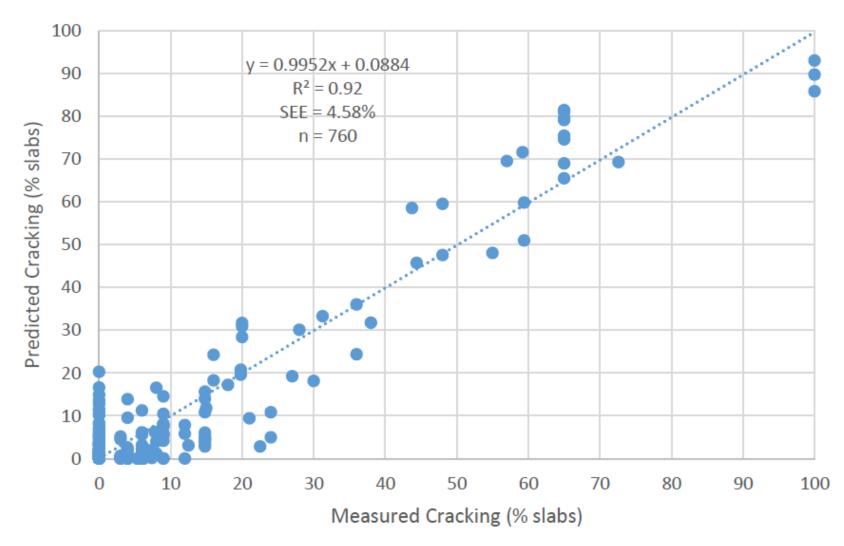
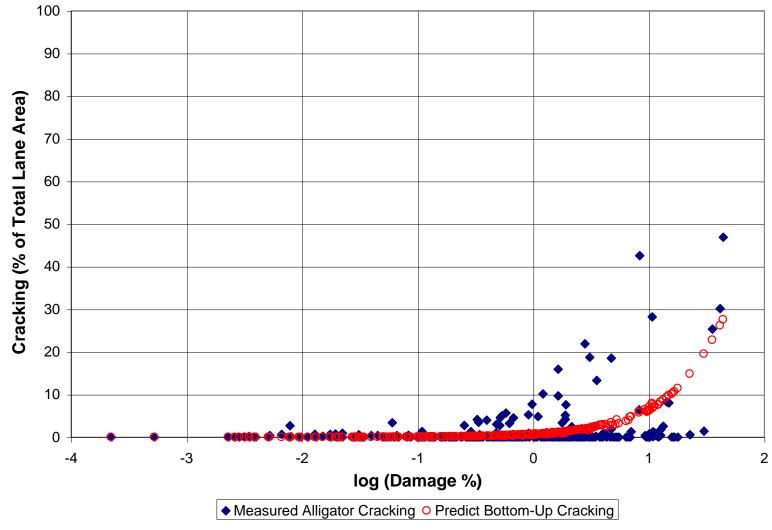

U.S. Department of Transportation Federal Highway Administration

Image Sources: Top left, image found at https://bit.ly/2PDOzMP and used under license terms found at https://bit.ly/1kvyKWi; top center and right, FHWA; bottom left, FHWA; bottom right, image found at https://bit.ly/2MKrSJV and used under license terms found at https://bit.ly/1rRyEZO.

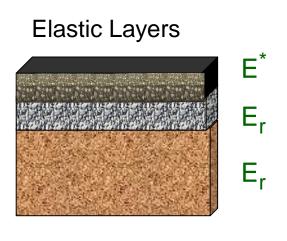

JPCP Cracking Model Calibration

Prediction Errors in JPCP Cracking Model

AC Bottom-Up Fatigue Cracking Model

Slab Thickness vs. Cracking

A



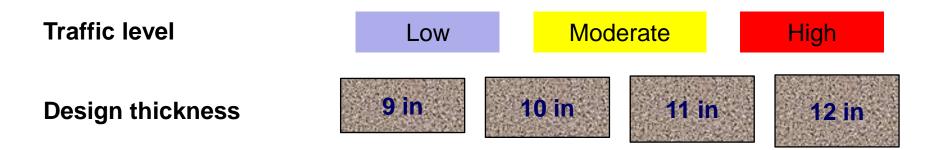
Structural Model

Plate on elastic foundation E \$\$\$\$\$\$ k

PCC Pavements

Image Source: FHWA

AC Pavements


U.S. Department of Transportation Federal Highway Administration

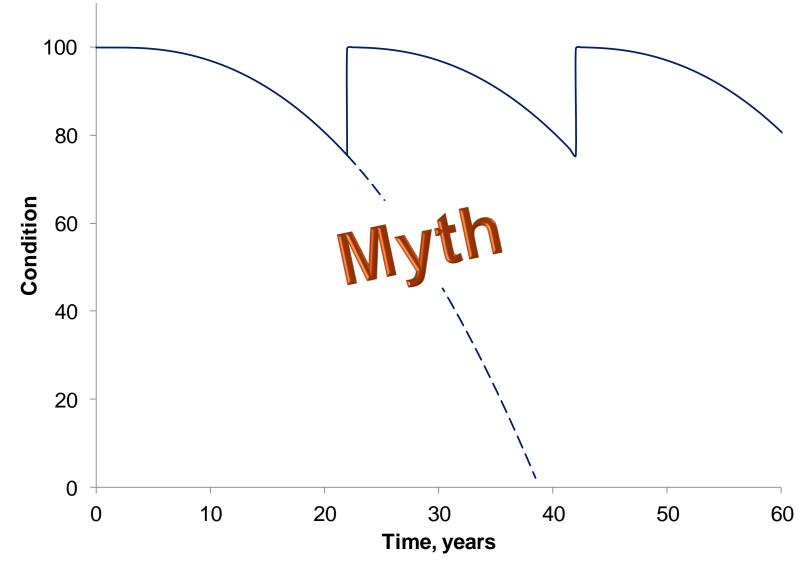
Keys to Achieving Well-Performing Pavement

Minimize the risk of poor performance

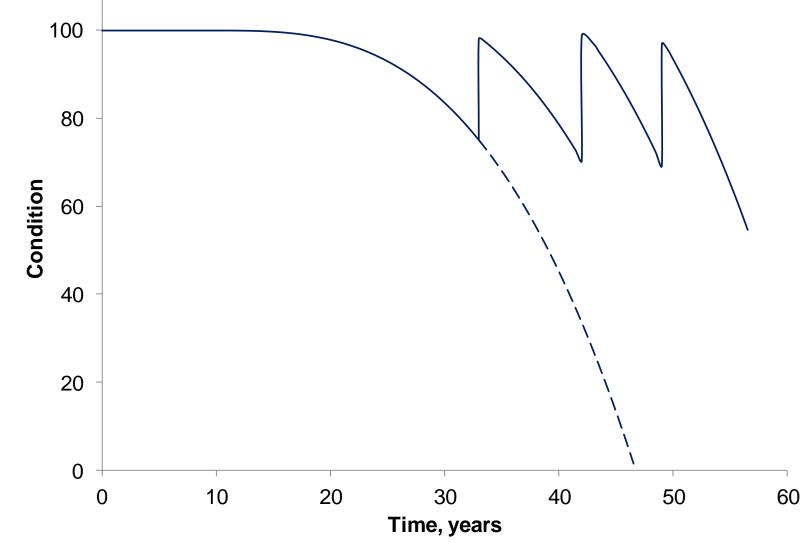
- Effective structural design
 - $\circ\,$ Good foundation
 - Adequate structural section
 - Appropriate design features
- Durable material
 - Durable surface
 - No material-related problems
- Quality construction

Slab thickness options *for highways*

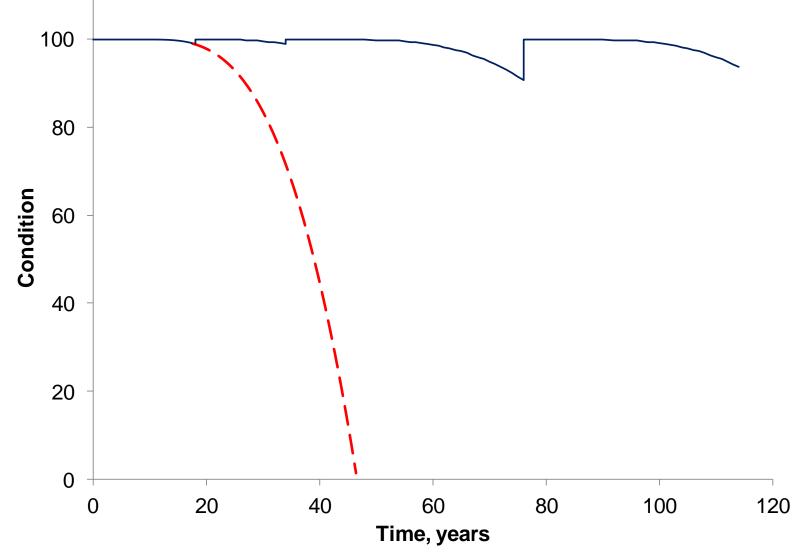
How many different ways can you design an 11-in concrete pavement?

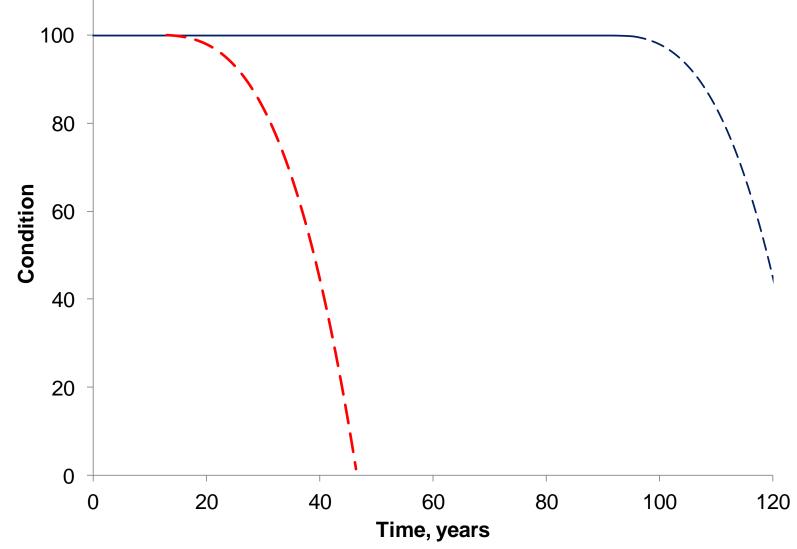

Design Objectives

- Provide safe, smooth, and quiet riding surface
- Requirements low cost and least amount of interruptions to users:
 - Good performance (low distress) no, lengthy lane closures for maintenance, repair, or rehabilitation
 - \circ Long-life relates to congestion, cost, and safety

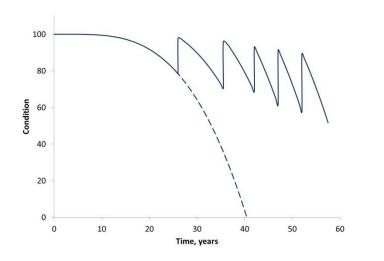

Current Practice

- Pavements are designed to fail
 - \circ Finite design period
 - Pavements are designed for relatively high levels of distress at the end of the design period
- Repairs are not made until distresses
 progress to high severity
- Structural overlays are used primarily as a corrective measure
 - Typically used on pavements in poor condition
 - $\,\circ\,$ A thicker overlay is generally required


Pavement Condition vs. Age

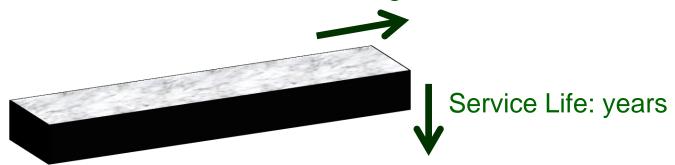

Pavement Condition vs. Age: Current Practice

Pavement Condition vs. Age Preservation Approach


Pavement Condition vs. Age: Long-life Approach

What Is Needed

- Design pavements to last as long as the materials
 - Pavements should remain distress-free within the design period
 - Utilize design features that ensure good long-term performance
- Build it right
- Apply preventive treatments to preserve the pavement structure
 - \circ For sustainability, preservation is better than reconstruction
 - $_{\odot}\,$ Prevention is the best preservation strategy


State-of-Good-Repair vs. Good Pavement

State of Good Repair Condition: Fair M&R: high Cost: \$\$\$\$ Good Pavement Condition: Excellent M&R: very low Cost: \$\$

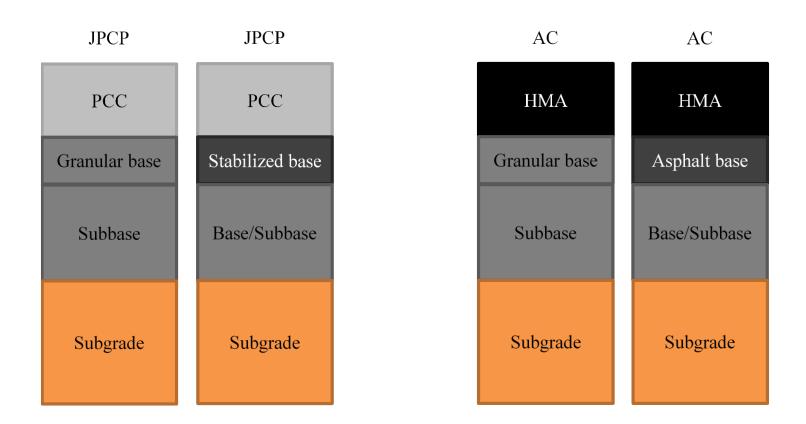
Two Dimensions of Paving

Coverage: lane-miles -> \$/mi

Unit of Paving = **lane-mile-years** Pavement cost = \$/lane-mi-yr

A network of x lane-miles of pavement requires an addition of x **lane-mile-years** of service life each year to maintain status quo

Image Source: A Quick Check of Your Highway Network Health: FHWA-IF-07-006


Cost considerations

- Highway investment decision is a resource allocation problem
 - Minimizing LCC of a single project does not provide the best results for the network level
 - At any given funding level, the optimum solution is one that buys the most service life for the network (total lane-mile-years)
- Relevant parameter is \$/lane-mi-years
- Optimizing \$/lane-mi-years ensures most value for the investment

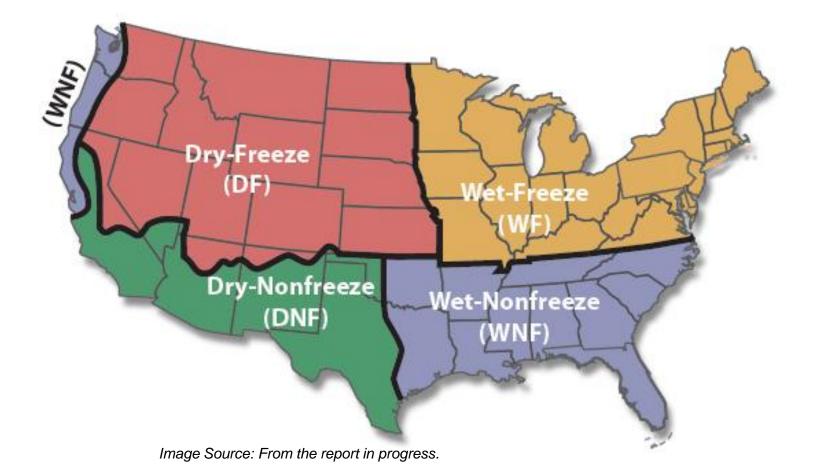
Design Catalog

- Intended to promote good pavement designs to ensure good, long-term pavement performance
- Both AC and PCC pavements are included
- Design tables are provided that could be used for design checks

Types of Pavements Considered

Content of the Design Catalog

- Chapter 1: Introduction
- Chapter 2: Design considerations
- Chapter 3: Subsurface drainage recommendations
- **Chapter 4**: Special subsurface conditions
- Chapter 5: Recommendations to reduce early distresses
- Chapter 6: Structural design, JPCP
- Chapter 7: Structural design, AC pavement
- Chapter 8: References
- **Appendices**


Guidelines Are the Catalog's Main Feature

- Design features for different design conditions
- Material considerations
 - $\circ~$ AC and PCC
 - Base and subbase
 - o Subgrade
- Special subsurface conditions
 - $\circ~$ Subsurface problems and investigations
 - Subsurface water flow and saturated soils
 - Collapsible, swelling, and frost-susceptible soils
 - Variability of soil types
 - Subgrade improvement by stabilization
- Minimizing potential for early distress development

Key Design Parameters Considered

- Design Life
 - 20-year and 40-year (long-life) designs
- Subgrade
 - $\,\circ\,$ M_R of 8,000 to 18,000 psi
 - Three categories
- Traffic levels
 - Average Daily Truck Traffic (AADTT) from < 500 to 10,000
 - Four categories
- Climate
 - Four LTPP climatic zones

Four Climatic Zones Considered (LTPP)

Example Design Table

Traffic Class (AADTT)		≤ 500				1500/2000		4500			
Subgrade Resilient Modulus (psi)		8000	13000	18000	8000	13000	18000	8000	13000	18000	
			Feature ^{Min} "h"	Min Feature "h"	Min Feature "h"	Feature ^{Min} "h"	Feature Min "h"	Feature ^{Min} "h"	Feature ^{Min} "h"	Min Feature "h"	Feature: Min "h"
ıd subbase	JPCP	Total "Thickness" should cover frost depth in Table 1.	AS 7 TS 7 WS 6/9 *	AS 7 TS 7 WS 6/9 *	AS 7 TS 6 WS 6/9*	AS 8 TS 8 WS 7	AS 8 TS 8 WS 7	AS 8 TS 8 WS 7	AS 11 TS 11 WS 9	AS 11 TS 11 WS 9	AS 11 TS 11 WS 9
	Granular Base Course		4	4	4	6	6	6	8	8	8
ar base ar	Subbase		-	-	-	-	-	-	18	12	8
PCC with granular base and subbase	Frost Protection Layer	Total "Thicknes	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1
<u>م</u>	Subgrade		-	-	-	-	-	-	-	-	-
			မ္မန္နိ *With Dowel/With to z	out Dowel		Notes			Notes		
			Feature Min "h"	Feature Min "h"	Feature Min "h"	Feature ^{Min} "h"	Feature Min "h"	Feature Min "h"	Feature Min "h"	Feature ^{Min} "h"	Feature ^{Min} "h"
	JPCP	d cover : 1.	AS 7/9* TS 6/9* WS 6/8*	AS 7/9* TS 6/9* WS 6/8 *	AS 6/8 * TS 6/8 * WS 6/7 *	AS 9 TS 9 WS 6	AS 9 TS 8 WS 6	AS 9 TS 7 WS 6	AS 11 TS 11 WS 8	AS 11 TS 11 WS 8	AS 8 TS 8 WS 7
ilized base	Stabilized Base	ll "Thickness" should cc frost depth in Table 1.	4	4	4	4	4	4	6	6	6
PCC with Stabilized base	Frost Protection Layer	Total "Thickness" should cover frost depth in Table 1.	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1	see Table 1
	Subgrade		-	-	-	-	-	-	-	-	-
			မ္နီ *With Dowel/With ရန္န ဗ	out Dowel		Notes			Notes		

Example PCC Design

Traffic Class (AADTT) Subgrade Resilient Modulus (psi)		4500 - 10000						
		8000		13000		18000		
			F	eature ^{Min}	F	Feature "h"	F	eature ^{Min} "h"
se	JPCP	ost depth		AS 14 TS 14 WS 11		AS 14 TS 14 WS 11		AS 14 TS 14 WS 10
PCC with granular base and subbase	Granular Base Course	l cover frc 1.		8		8		8
	Subbase	s" should in Table		24		18		12
	Frost Protection Layer	Total "Thickness" should cover frost depth in Table 1.		see Table 1		see Table 1		see Table 1
	Subgrade			-		-		-
			Notes					

U.S. Department of Transportation Federal Highway Administration

Status

- Draft report near completion

 Guidelines are mostly complete
 Design tables are being completed
- Anticipated completion of the draft report: December 2018
- Final report will be released March 2019

Related Work

- Improving Foundation Designs
 - Effective Foundation Design for Concrete Pavements (January 2020)
- Improving Pavement Strategy (Long Life Pavements)
 - Strategies for Concrete Pavement Preservation (January 2020)
- Transportation Pooled-Fund open solicitation
 - TPF 1469: Road Foundation Contamination and Drainage In-Service Evaluation and Best-Practice Recommendations

Via Apia, built about 312 B.C.

This image was found at https://bit.ly/2Q23rW5 and is being used under license terms available at https://bit.ly/1kvyKWi.. Tom Yu tom.yu@dot.gov

Acronyms

- AC: Asphalt concrete
- AADTT: Annual average daily truck traffic
- ESAL: Equivalent single axle load
- HMA: Hot mix asphalt
- **IRI:** International roughness index
- JPCP: Jointed plain concrete pavement
- LTPP: Long-Term Pavement Performance program
- M&R: Maintenance and repair
- PCC: Portland cement concrete