

Promoting Quality in Workmanship (West Virginia Specifications)

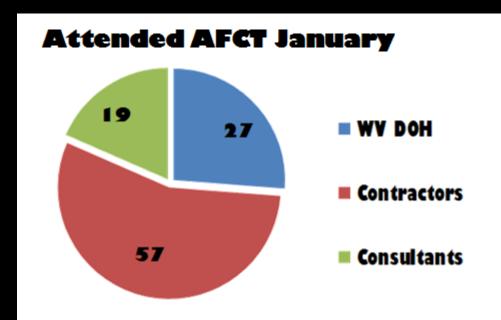
South Eastern States Pavement Conference Charleston, WV October 25, 2018


Specification Areas

- Field Technician Program
- PWL
- Warranty
- Smoothness Specification

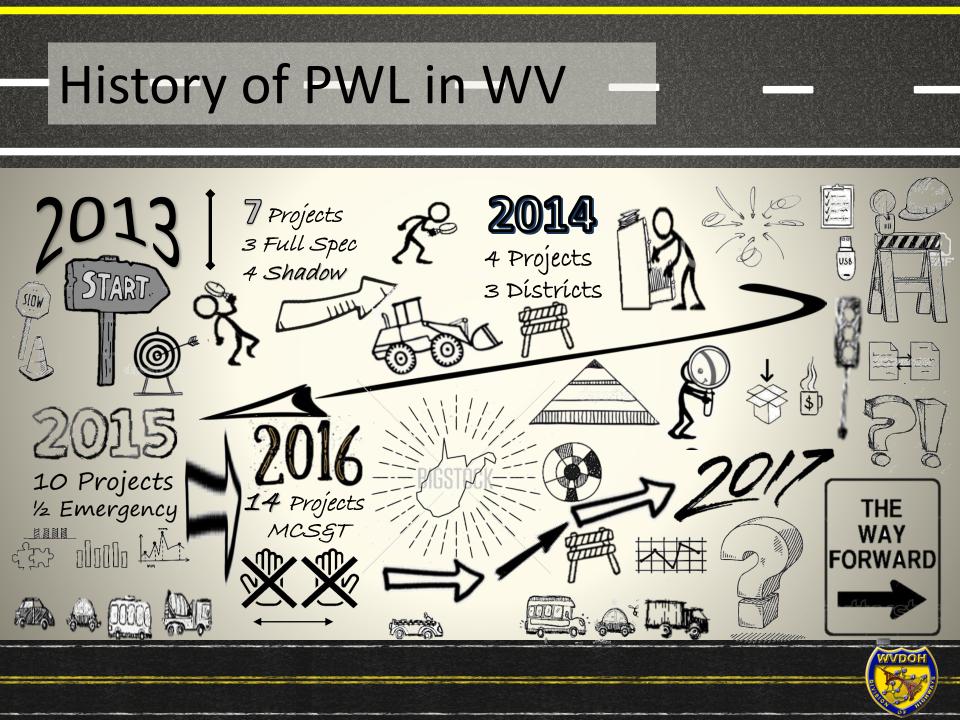
ASPHALT FIELD AND COMPACTION TECHNICIAN SUMMARY

Each paving crew needs an AFCT
AFCT must be Contractor's employee
Recertification every 2 years


ASPHALT FIELD AND COMPACTION TECHNICIAN

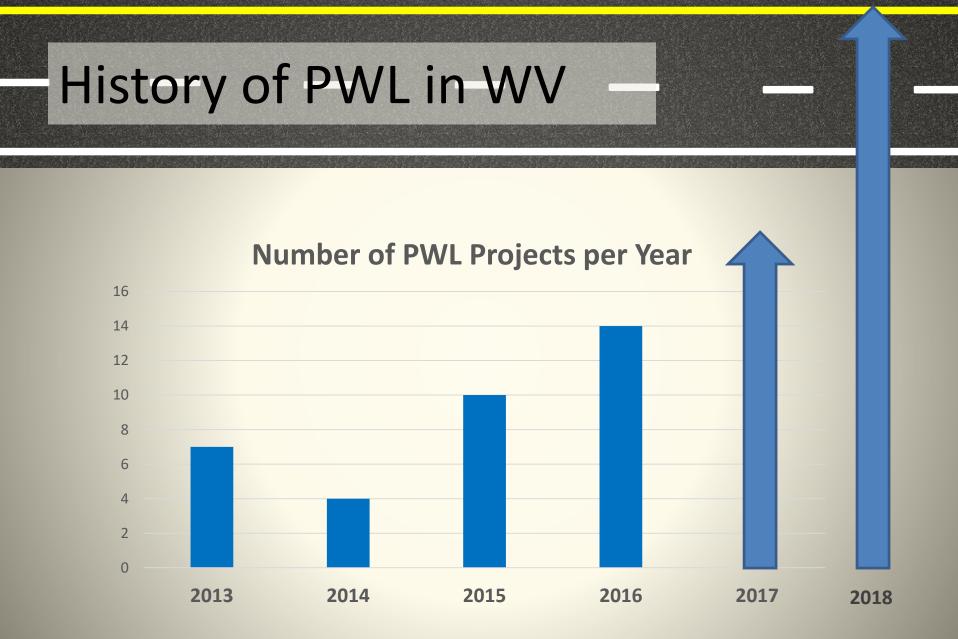
401.6.1-Quality Control Testing (Continued)

The Contractor shall maintain necessary equipment and qualified personnel including at least one certified Asphalt Field and Compaction Technician at each project during paving operations. Additionally, a certified Asphalt Field and Compaction Technician with certification to perform nuclear density testing of asphalt pavements shall perform all testing necessary to assure compaction of the asphalt meets specification requirements. Compaction Technicians may serve as Asphalt Field and Compaction Technicians for asphalt compaction testing until December 31, 2017.


CHANGES TO THE PROGRAM

<u>Class Stats:</u> 103 Attendees 98% Passing rate

History of PWL in WV


2018 All NHS Asphalt PWL

This work shall consist of constructing one or more courses of asphalt, mixed mechanically in a plant, composed of aggregate and asphalt material designed in accordance

grades, weights or I thicknesses, and cross sections shown on the Plans or established by the Engineer. The unit of measurement for asphalt will be by the ton (megagram), square yard

foll imp The that rela the beh

WYDOH

Understanding PWL Calculations

- 1. Determine the Mean
- 2. Establish the Standard Deviation
- 3. Calculate the Upper and Lower Quality Index

$$Q_{u} = \frac{USL - \overline{X}}{s} \qquad Q_{L} = \frac{\overline{X} - LSL}{s}$$

$$\overline{X} = \frac{\Sigma X}{n} \qquad s = \sqrt{\frac{\Sigma (X - \overline{X})^{2}}{n - 1}}$$

Understanding PWL Calculations

- 4. Enter Table 1 in MP 401.13.50
- 5. Use the upper and lower quality level to calculate Percent Within Limits

$$PWL = (P_u + P_L) - 100$$

Do I have to do the MATH ...?!

T-432 Rev. 8-15-2014

Bond Strength Pay Adjustment

T-432 NHPP-0050(338)D SL12

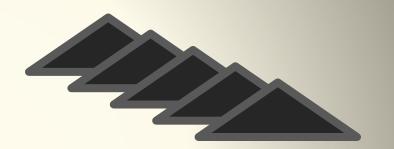
WEST VIRGINIA DIVISION OF HIGHWAYS Summarization of Lot Test Samole Data

Project Number Source Material Type Lot Number	2	NHPP-00 Clarksbur SP 9.5MM SL12	G((338)D) g Asphall	3.73	Sou Mate	T-400 # T-400 # rce Code rial Code IC Target	139 CAO	4715 01.01.400 002.016 Ver	(C287A)	
ASPHALT	Target	SL12 -	SL12 - M2	SL12 - M3	SL12 - M4	SL12 - M5	SL12 - Mis	SL12 - M7	Average	Standard Deviation
Tech		SJ/CDU	SJ/CDU	SJICDU	SJ/CDU	SJ/CDU	SJYCDU	SJ/CDU	1	
Oven		1	1	2	1	1	2	1		
Oven Correction	and the second	0.52	0.52	0.53	0.52	0.52	0.53	0.52	and in case of	
AC % (NCAT)	6.2	6.23	5.93	5.76	6.44	6.03	6.36	6.28	6.15	0.26
AC % (Math)		6.19	5.93	5.75	6.47	6.52	6.31	6.31	6.21	0.28
Difference	1	0.04	0.00	0.01	-0.03	-0.49	0.95	-0.03	-	
GRADATION	Target	SL12 - M1	SL12 - M2	SL12 - M3	SL12 - M4	SL12 - M5	SL12 - M6	SL12 - M7	Average	Standard Deviation
2 in (50 mm) 1 1/2 in (37.5 mm) 1 in (25 mm) 3/4 in (19 mm)		100	100					100	100	0
월 1/2 in (12.5 mm)	100	100	100	100				100	100	0
3/8 in (9.5 mm) 2 No. 4 (4.75 mm)	96	96	.96			94		94	95.2857	0.95
	60	59	59	58	59	58	63	57	59	1.91
2 No. 8 (2.36 mm)	38	37	37	36	37	36	39	35	36,7143	1.25
No. 15 (1.18 mm)	24	22	22	22	22	21	23	21	21,8571	0.69
No. 30 (600 µm)	15	14	13	14		13	15	13	13,7143	0.76
No. 50 (300 µm)	9	9	9	9	10	9	10	9	9.28571	0.49
No. 200 (75 µm)	5.1	5.6	4.9	5.5	5.9	5.2	6.2	5.1	5,48571	0.46
Weight Check	0.20	0.03	0.02	0.04	-0.01	0.04	0.09	0.05		
DENSITY CORES	Target	SL12 - DT1	SL12 - DT2	SL12 - 0T3	SL12 - DT4	SL12 - DT5	SL12 - DT6	SL12 - DT7	Average	Standard Deviation
Tech	and the second		SJCDU	SJICDU	SJ/CDU	SJCDU	SJ/CDU	SJICDU		
Thickness (Density)	2	2.15		2.23	2.06	1.82	1.80	2.24	2.05	0.2
DENSITY	in the second	93.45		87.14	90.99	92.64	92.60	93.82	91.77	2.47
BOND CORES	Target	SL12 - BT1	SL12 - BT2	SL12 - BT3	SL12 - BT4	SL12 - BT5	SL12 - BT6	SL12 - BT7	Average	Standard Deviation
Tech		SJCOU	SJICDU	SJ/CDU	SJICOU	SJ/CDU	SJICDU	SJ/COU		10000000000
Thickness (Bond)		2.36	2.17	2.19	2.02	2.05	1.77	2.00	2.08	0.19
Bond Strength PSI	100	90.83	79.56	75.57	87.19	66.80	163.12	0.00	80.44	47.73
Asphalt	Density I Contient 1g #200	EPWI,	9	i5 12 00		Asphalt	iensity Pay Content Pi g #200 Pay	ay Factor	100	00% 00% 00%
Lot Payment Surface Thickness Pay Deduction					1000	00% Pay				

Before Construction

- Pre Paving Meeting
- Paving Plan
- Lot Layout
- Sampling Plan

Laying Out Paving Plan -


Additionally the following Materials Procedures (MP) for Square Yard Paving may be obtained by contacting the Materials Control, Soil and Testing (MCS&T) Division:

0	MD 401 02 21	OC & Accoptance
b.	MP 401.07.20	Sampling Loose Asphalt Pavement Mixtures
c.	MP 401.07.21	Sampling Compacted Asphalt
a.	MP 401.07.22	Thickness of Asphan Concrete Using Cores
e.	MP 401.07.23	Bond Strength
f.	MP 401.07.24	Pavement Macrotexture
g.	MP 401.07.25	Evaluation of Asphalt Pavements
h.	MP 401.13.50	Determination of PWL



Laying Out Paving Plan

- Remember Lot Sizes
 - 2500 tons per lot
 - 500 ton sublots

- Determine square yards per lot / sublot
- Cover square yards to square feet
- Divide square feet by the pull width

Linear Feet Per SubLot

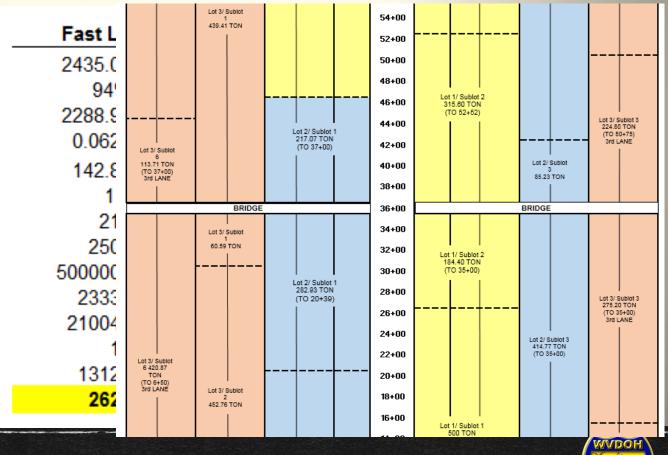
Laying Out Paving Plan

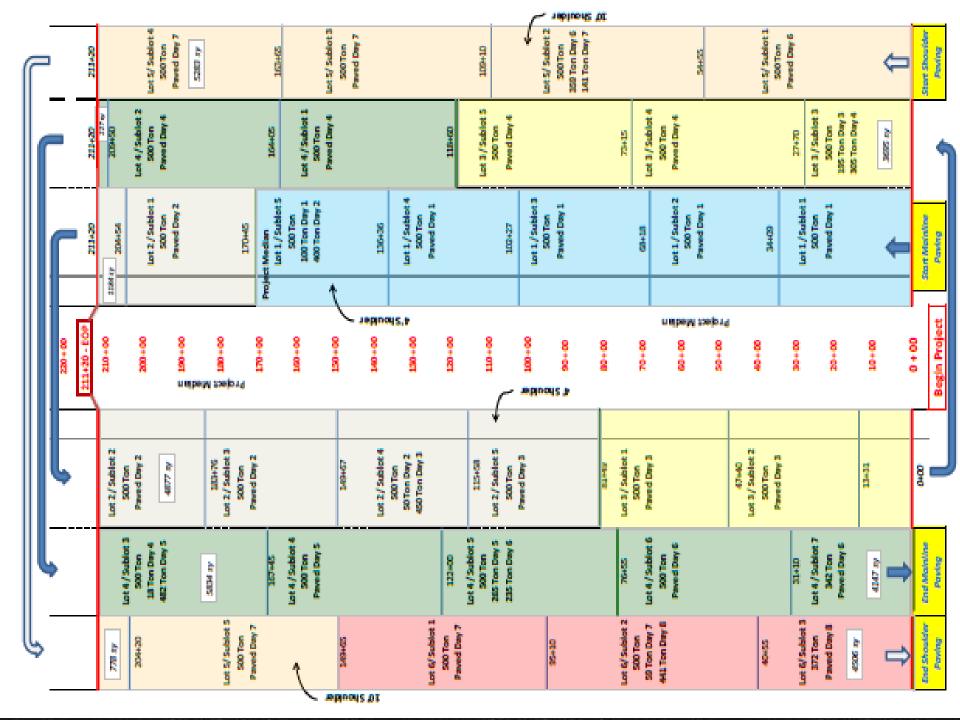
Remember Lot Sizes

- 2500 tons r
- 500 ton suk
- Determine
- Cover squa
- Divide squa

Fast Lane and Shoulde.

2435.00 kg/m³ 94% Passing Density 2288.90 Target Density 0.0624 English Conversion 142.83 lb/ft³ 1.5 SY Conversion 214 lbs/sy 2500 TN/I of 5000000 Lbs/Lot 23338 SY/Lot 210044 SF/Lot 16 Ft. Lane Width 13128 Ft/Lot 2626 Ft./Sublot


/ sublot et idth


ot

Laying Out Paving Plan -

Linear Feet Per SubLot

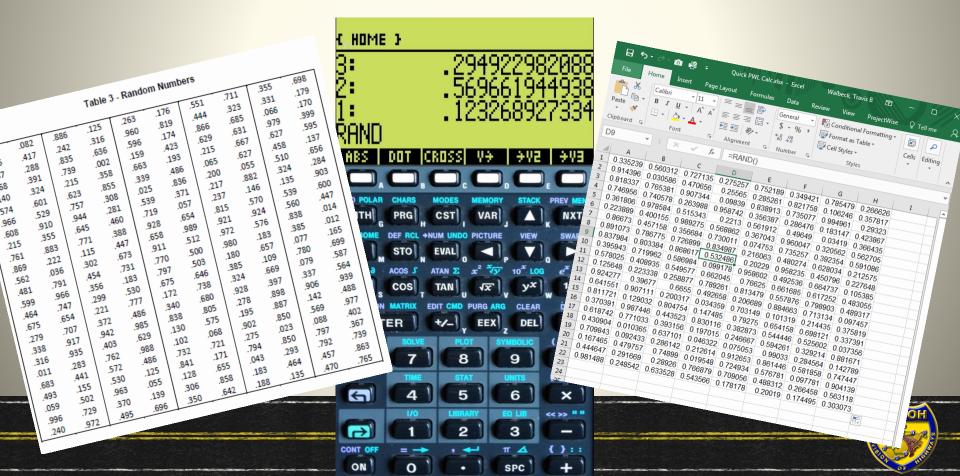
Laying out Sampling Plan

- Lots are established
- Generate sample locations
- How do we select the locations?

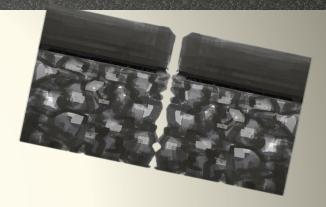
RANDOM NUMBERS

Laying out Sampling Plan

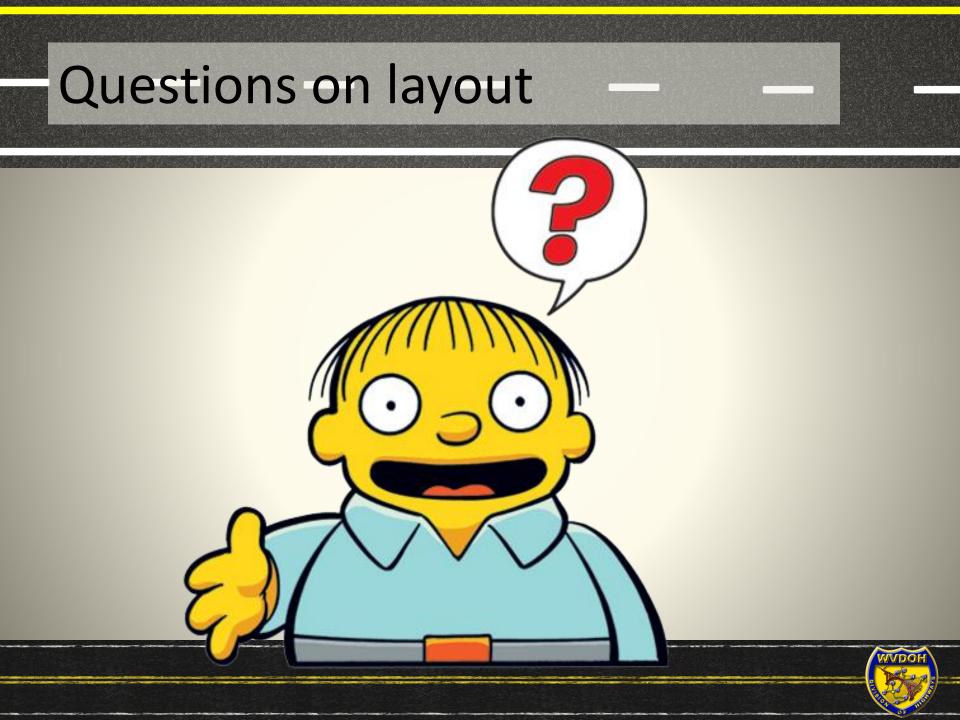
Where do we get Random Numbers?


20

17


Laying out Sampling Plan

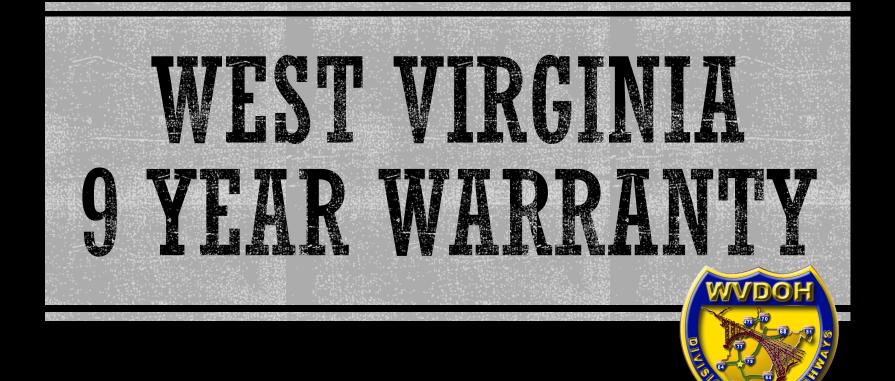
Where do we get Random Numbers?


Layout Joint Lots

- 10,000 ft of joint
- 2,000 ft SubLots
- Core centered on the joint

2,000 ft	Starting STA 🛛 🔶	89+20 ft
<u>x 0.8514</u>	Random Number	<u>+ 1703 ft</u>
1703 ft	Sample STA →	106+23 ft

PWL FAQs and Key Points


- Consistancy
- 24 hour Test Results
- Sister Samples
- Field Samples v Plant Samples
- Verification
- Calibration Samples
- ReCalibration of Oven

Contractor's Keys to Success

- Stick to paving plan
- Consistency
- Don't make big adjustments
- Consistency
- Best Practices in the Field and Plant
- Consistency

Special	Provision	Bundle
–		

February 25, 2015	
WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS SPECIAL PROVISION FOR STATE PROJECT NUMBER:	
TEDERAL PROJECT	
SECTION OF THE SECOND PARAMENT PERFORMANCE CRITERIA INTER THIS SECOND STATION SIGNAL ONLY APPLY INTERNATION AND AND AND AND AND AND AND AND AND AND	riteria les the estime estime entropy and the of initial of divided roject. ork. Each of
page 1 of 28	

Contractor uses the processes of their choice

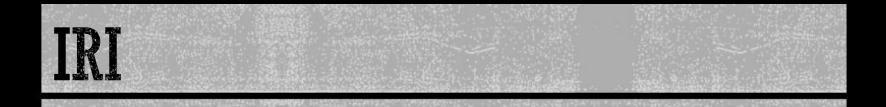
- Anything in DDs or
- Approved procedure (Other States Specs)

 Contractor maintains road, must meet certain criteria every year for 9 years

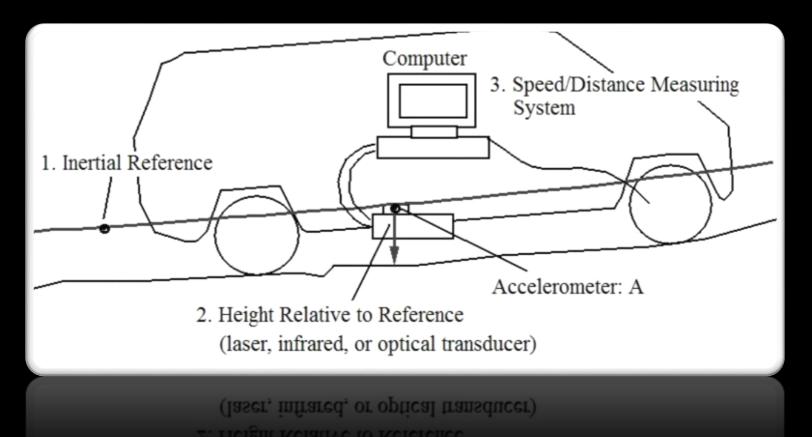
- Smoothness / Roughness IRI
- Pavement Surface Rating (PSR)
- Threshold Limits

PERFORMANCE CRITERIA

 Smoothness / Roughness – International Roughness Index (IRI)
 Incentive/Disincentive - <65 / >81


Pavement Surface Rating (PSR)
 Incentive/Disincentive - Sliding Scale : 80

Threshold Limits


Warranted Work, NOT optional!

General Observations

Scanned with our van

PSR

Pavement Survey

- Measure, rate, and quantify distresses, rutting
- 0.1 mile roadway segments
- Two per mile, STA 0.4 0.5, Random

GENERAL OBSERVATIONS

- Anything of note on the <u>entire length</u> of roadway
 - Longitudinal Cracks
 - Transverse Cracks
 - Segregation

Other small gouges, scratches, etc

OTHER MAJOR POINTS

Lane Rental (set dollar amount)

- per Lane per Mile per Day
- Contractor bids the number of days needed
- After exceeding days bid, contractor pays Division the rental fee
- Idea is to promote quality work upfront
 "Get in, get out, stay out"

Document Everything

- MCS&T
- District Personnel
- Contractor

BONUS AND PENALTY

Rated each yearIRI

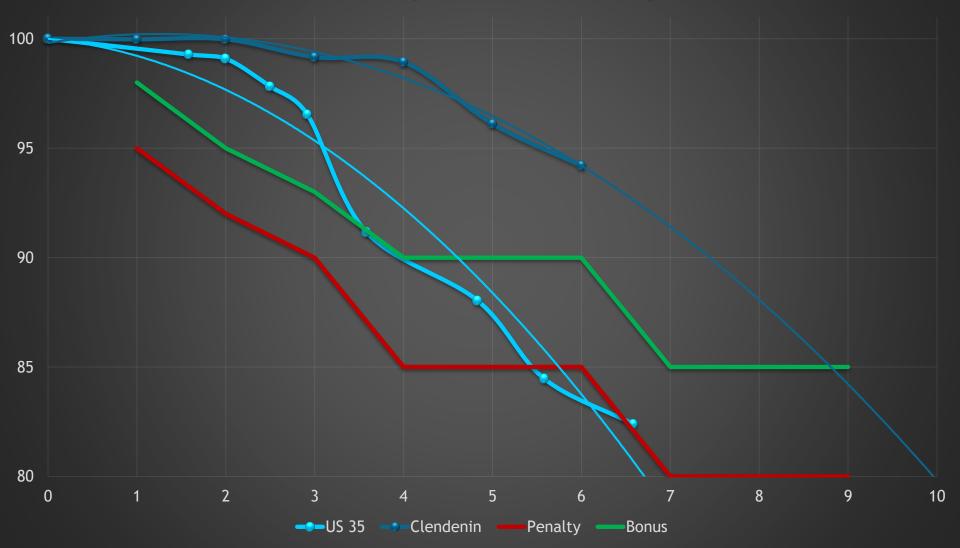
- <65 Bonus
- >81 Penalty

PSR

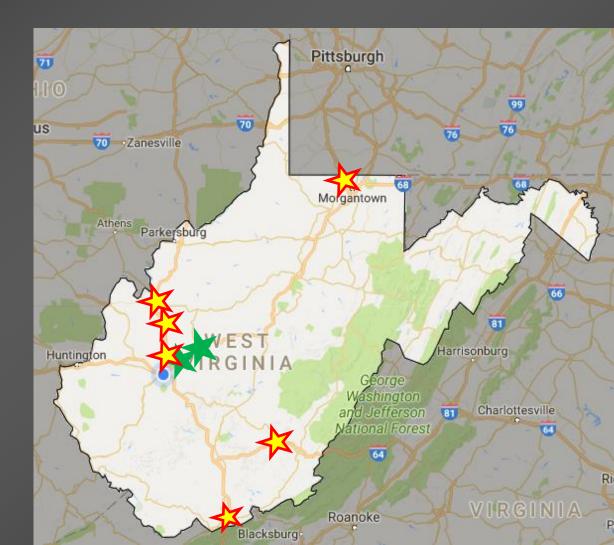
- >98-85 Bonus
- <95-80 Penalty</p>

Year Nine

- IRI
- PSR



Warranty vs nonWarranty



Projects

6 - Warranty

2 - Ex Warranty

WHAT YOU NEED TO KNOW: SPECIFICATION 720

OVERVIEW OF SECTION 720

- Updated Certification process for both Operator and Equipment
- Two Classifications of roads:
 - NHS: QC Testing Required
 - Similar Price adjustments as SP 720
 - Non-NHS: QC Testing not Required
 - Price adjustments based on % improvement
- Minimum Length of project: 0.2 miles

NHS ROUTE SCHEDULES

• Schedule 1:4 inches or More

Schedule 2: 4 inches < 3 inches

 Schedule 3: 2 inches < 1 inch

TABLE 720.5.2 Schedule 1 NHS Pavement Projects					
IRI for each 0.1-mile section (in/mi)	Price Adjustment (\$)				
30.0 or Less	+600				
30.1 to 60.0	-20(IRI) + 1,200				
60.1 to 65.0	0				
65.1 to 95.0	-20(IRI) + 1,300				
95.1 or Greater	Corrective Action Required				

TABLE 720.5.3Schedule 2 NHS Pavement Projects				
IRI for each 0.1-mile section (in/mi) Price Adjustment (\$)				
46.0 or Less	+600			
46.1 to 76.0	-20(IRI) + 1,520			
76.1 to 80.0	0			
80.1 to 120.0	1,200 - 15(IRI)			
120.1 or Greater	-600			
· · · · · ·				

TABLE 720.5.4 Schedule 3 NHS Pavement Projects				
IRI for each 0.1-mile section (in/mi) Price Adjustment (\$)				
46.0 or Less	+300			
46.1 to 76.0	-10(IRI) + 760			
76.1 or Greater	0			

NON-NHS ROUTES

- Based on Percent Improvement
- Non-NHS Criteria:
 - >.2 miles
 - 16 feet or wider
 - 1 in. or more of new pavement
 - ADT of 100 or more
- No negative price adjustments
- Bonus if.....

50% Improvement + < 170 IRI

NON-N

Pre PS&E Smoothness Data Page 1 of 1

1729614

1/29/2018

Northbound Lane

Ed Welsh Rd - Shirleys Lane

5 CR 11 Project Length: 3.014 mi.

District

Route:

JTIVES

Perc Where: Percent

вмр	EMP	Legth (mi.)	Average IRI (in/mi.)
2.04	2.14	0.1	126
2.14	2.24	0.1	155
2.24	2.34	0.1	131
2.34	2.44	0.1	138
2.44	2.54	0.1	140
2.54	2.64	0.1	138
2.64	2.74	0.1	239
2.74	2.84	0.1	217
2.84	2.94	0.1	220
2.94	3.04	0.1	167
3.04	3.14	0.1	228
3.14	3:24	0.1	230
3.24	3.34	0.1	212
3.34	3.44	0.1	169
3.44	3.54	0.1	159
3.54	3.64	0.1	139
3.64	3.74	0.1	118
3.74	3.84	0.1	165
3.84	3.94	0.1	98
3.94	4,04	0.1	101
4.04	4.14	0.1	132
4.14	4.24	0.1	163
4.24	4.34	0.1	145
4.34	4.44	0.1	111
4.44	4.54	0.1	154
4.54	4.64	0.1	199
4.64	4.74	0.1	90
4.74	4.84	0.1	103
4.84	4.94	0.1	129
4.94	4.99	0.05	278

Contract ID:

MCS&T Test Date

Est. PS&E Date:

Project Name:

вмр	EMP	Legth (mi.)	Average IRI (in/mi.)
4.99	4.89	0.1	234
4.89	4.79	0.1	117
4.79	4.69	1.0	116
4.69	4.59	0.1	127
4.59	4.49	0.1	150
4.49	4.39	0.1	179
4.39	4.29	0.1	112
4.29	4.19	0.1	132
4.19	4.09	0.1	173
4.09	3.99	0.1	100
3.99	3.89	0.1	129
3.89	3.79	0.1	175
3.79	3.69	0.1	180
3.69	3.59	0.1	119
3.59	3.49	0.1	142
3.49	3.39	0.1	157
3.39	3.29	0.1	240
3.29	3.19	0.1	150
3.19	3.09	0.1	168
3.09	2.99	0.1	230
2.99	2.89	0.1	150
2.89	2.79	0.1	251
2.79	2.69	0.1	166
2.69	2.59	0.1	180
2.59	2,49	0.1	155
2.49	2.39	0.1	66
2.39	2.29	0.1	140
2.29	2.19	0.1	92
2.19	2.09	0.1	129
2.09	2.04	0.06	85

Southbound Lane

Incentive ection) <u>nent) -</u> 900 ot X 100

livision's High Speed Inertial Profiler

Travis Walbeck, PE Pavement Engineer

Joseph Caudill Highway Engineer Trainee

Specification Areas

- Field Technician Program
- PWL
- Warranty
- Smoothness Specification

QUESTIONS

