NCHRP Project 14-38: Guide for Timing of Asphalt-Surfaced Pavement Preservation

James M. Bryce, Ph.D.

Marshall University

25 October 2018

Outline

- Objective of research
- Costs and benefits
 - Modeling pavement preservation
 performance
- Preservation timing with uncertainties
- Major findings / conclusions

James M. Bryce and Gonzalo R. Rada Amec Foster Wheeler Environmental and Infrastructure, Inc. Beltsville, MD 20705

Michael Heitzman National Center for Asphalt Technology at Auburn University Auburn, AL 36830

> R. Gary Hicks R. Gary Hicks, LLC Chico, CA 95926

August 31, 2018

WE ARE... MARSHALL.

Pavement Preservation & Performance

- Preservation essential to maintaining and improving pavement functional condition at relatively low cost
- Generally applied when pavement is still in good condition

Project Objectives

To develop guide for identifying timing for preservation of asphaltsurfaced pavements considering condition and non-conditionbased factors

- Treatment
- Pavement structure
- Pavement condition at time of treatment
- Traffic
- Climate, etc.

Preservation treatments are applied to preserve, slow deterioration, and maintain/improve pavement functional condition without substantially increasing structural capacity

WEARE... MARSHALL.

Findings of Timing Approaches in Literature

5

- Preservation timing problem lends itself to cost-benefit analysis
- Biggest shortfall performance models are complex and uncertainties are not considered
- Preservation is proactive

WEARE... MARSHALL.

 Requires performance comparison to control

Preservation Timing

Preservation timing is question of when benefits are maximized and costs minimized

- Majority of approaches based on Cost-Benefit analysis definitions of benefit and cost vary
- Timing is affected by condition and non-condition factors

WEARE... MARSHALL.

• Factors that affect pavement performance affect timing

Answering to Preservation Timing

- Can we define a consistent set of costs?
- How do we define benefits?
 - Can we model the effects of preservation?
 - How do we consider multiple performance measures?
- How to consider uncertainties?
- How to compare costs and benefits?

WEARE...MARSHALL.

Phase II: Obtain Performance & Cost Data

Agency	Number of Years in	Thin AC	Chip Seal	Micro-	Slurry
	Condition Data	OL		surfacing	Seal
MD-SHA	15	\checkmark		\checkmark	
VDOT	8	\checkmark	\checkmark		
KSDOT	30+ (Entire Database)	\checkmark	\checkmark		\checkmark
IDDOT	15		\checkmark		\checkmark
UTDOT	3		\checkmark	\checkmark	
TXDOT	10		\checkmark		
OHDOT	30+ (Entire Database)	\checkmark	\checkmark	\checkmark	
TNDOT	16	\checkmark			
MEDOT	16	\checkmark		\checkmark	
LADOTD	15	\checkmark	\checkmark	\checkmark	
LTPP	10-15 (Site Dependent)	\checkmark	\checkmark		\checkmark

✓ indicates data received

WEARE...

Blank cell indicates that a given State did not provide data for a given treatment

Effects of Preservation

Modeling the effects of preservation on a consistent set of measures

- No single model functional form fit the data
- Climate data were significant in each case, subgrade modulus in some cases

Database for climate and subgrade resilient modulus values developed

- Climate data for every county in from LTPP
 MERRA Climate database
- Subgrade soil from NRCS maps and NCHRP Project 9-23A

Q

WEARE... MARSHALL.

Identify untreated segments to treat as control

- Used DOT treatment selection criteria to identify pavements that were candidate for preservation
- Filtered out those with high probability of maintenance or rehabilitation performed
- Trained machine learning algorithm to identify unrecorded maintenance

	Segment	IRI Year	IRI Year	Rut	Rut Year	Equivalent	Equivalent	Probability of	
	Number	1	2	Year 1	2	Cracking Year 1	Cracking Year 2	Work	
	1	125	115	0.1	0.05	0.1	0.1	0.44	
	2	200	170	0.15	0.16	1.5	1.5	0.37	
	3	75	82	0.05	0.08	1	0.8	0.04	Ser.
	4	150	155	0.1	0.05	1.2	1	0.28	
	5	164	130	0.15	0.1	0.8	0	0.95	V NE
ARE MARSHALL 10								4	

State and LTPP data used to develop models

- Fits evaluated using simulation
- Few cases that model could not be developed from data
- Inconsistent cracking definitions across States
- Only LTPP data for slurry seals

	IRI	Rutting	Transverse Cracking	Fatigue Cracking	NWP Long. Cracking
Thin Overlay	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Chip Seal	\checkmark	\checkmark	\checkmark		\checkmark
Microsurfacing		\checkmark	\checkmark		\checkmark
Slurry Seal	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Immediate change in condition

WEARE... MARSHALL.

- Generally consistent across DOTs and LTPP
- Transverse cracking not zero after chip seal, microsurfacing or slurry seal 2.5×10^{-3}

Develop Required Models

Change in performance

- Results varied across DOTs
- Quality of fit ranged from good to poor
- Regression identified
 statistically significant factors

What to do with negative growth rates?

WE ARE ... MARSHALL.

Negative Growth Rates

- Engineering knowledge versus statistical phenomena
 - Deleting negative values will significantly bias models

Example fit – transverse cracking growth following chip seal

WEARE... MARSHALL.

Factor	Coefficient
b ₀	-234
TRCK _{Pre} ²	3.74*10 ⁻⁵
IRI _{Pre}	-11.8
IRI _{Pre} ²	0.106
MAAT	10.04
FTC	2.70
HiTemp	-7.57
HiTemp ²	0.070
TRCK _{Pre} *Pres _{Ind}	-0.118

Transverse cracking growth following chip seal

• Simulation and sensitivity analysis

Example poor fit with informative results

• IRI growth following chip seal

WEARE... MARSHALL.

Example poor fit with informative results

IRI growth following chip seal

Factor	Coefficient
b ₀	57.16
IRI _{Pre}	2.66*10 ⁻³
Log ₁₀ (M _R)	-13.7
FTC	-0.035
Pres _{Ind}	-46.1
FTC ²	4.70*10-4
IRI _{Pre} *FTC	7.69*10 ⁻⁴
Log ₁₀ (M _R)*Pres _{Ind}	11.9
FTC* Pres _{Ind}	-0.071

Example poor fit with informative results

Simulation and sensitivity analysis ٠

Model development included uncertainties in change in condition and performance prediction

• e.g., IRI change following thin overlay

WEARE ... MARSHALL

• Guide will include recommendations on how to address uncertainties

- Evaluate how costs and benefits are combined
 - Cost per unit value of benefit

 $\min z = \frac{\left(\frac{Cost_i}{\max(Cost_i)}\right)}{WB_i}$

Distance from hypothetical optimal solution

$$\min z = \left[\left(\frac{a}{WB_i} \right)^n + \left(\frac{Cost_i}{\min(Cost_i)} \right)^n \right]^{\frac{1}{n}}$$

Least Benefit distance Benefi Most Benefit Highest Lowest Cost Cost Cost

WE ARE ... MARSHALL

What Does This Mean for Timing?

Results of Comparison

- Overlay should be placed in year 5
 - Driven primarily by benefits at that time
 - Immediate change in all measures
 providing primary benefit
- Chip seal placed in year 6
 - More influenced by cost

WEARE ... MARSHALL

• Immediate change in transverse cracking and reduction in IRI growth driving recommendation

Conclusions / Discussion

- Preservation timing is driven by:
 - Performance measures / models
 - Preservation treatment
 - Condition and non-condition factors
 - Costs, uncertainties and assumptions
- The answer is not always to apply preservation right now
 - If benefit is primarily driven by immediate change in condition (e.g., thin overlay – cracking/rutting) – apply preservation later in time
 - If benefit is primarily driven by change in performance (e.g., chip seal – IRI) – apply preservation earlier in time

WEARE ... MARSHALL

Thank you!!!

