

We bring innovation to transportation.

Pavement Recycling

Brian Diefenderfer, PhD, PE

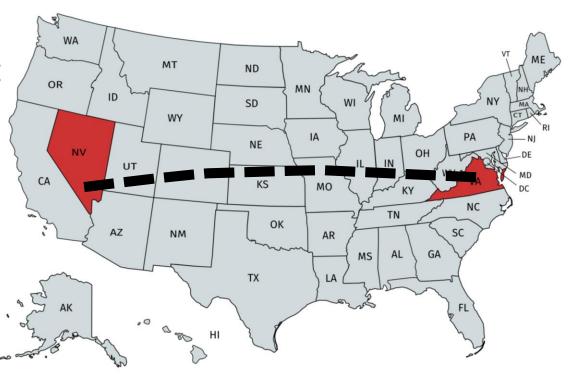
Southeastern States Pavement Conference October 25, 2018

Overview

- 1. Pavement recycling techniques
- 2. Major projects and design lessons learned
 - a) **I-81**
 - b) NCAT
- 3. Application of design lessons learned
 - a) I-64
- 4. Summary

Pavement Recycling Processes

- Full-depth reclamation
 - Pavement foundation
 - Mixed in the road
- Cold in-place recycling
 - Upper portions of the asphalt layers
 - Mixed in the road
- Cold central plant recycling
 - Similar to CIR but at a mobile plant
 - Can be placed in multiple layers


Why Agencies Should Recycle Pavements

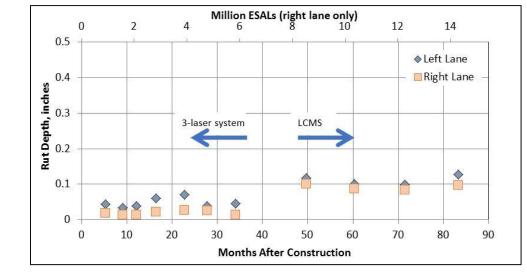
- Costs
 - 30-50% reduction
- Greenhouse gases
 - Up to 50% reduction
- Address causes rather than symptoms
- Accumulating RAP

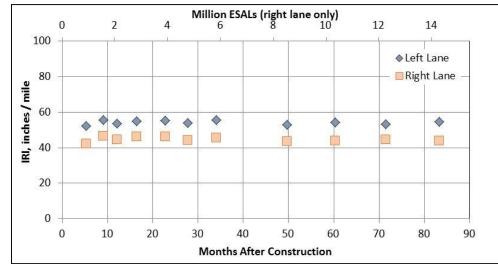
More than 10 million tons of RAP stockpiled in Virginia

Could pave a 12-foot wide lane, 12 inches deep for more than 2,300 miles

So what hurdles remain?

- Limited experience
- Failure mechanisms are not well understood
- Limited number of recycling contractors
- Limited number of projects
- It's something different


I-81 (2011)



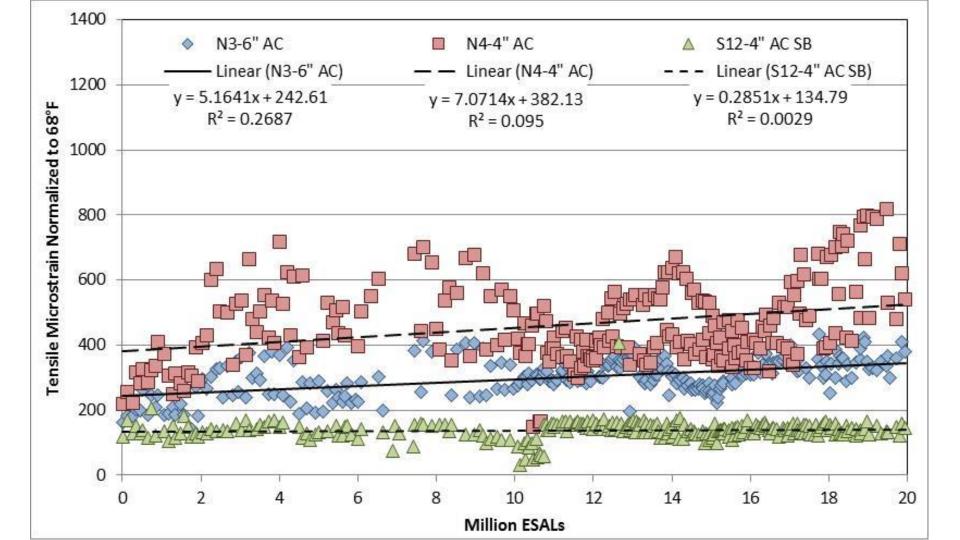
I-81 (2011)

- 2011
- 3.7 miles
- AADT = 24,000
- 29% trucks
- About 14 million ESALs (right lane)

Left Lane	Right Lane	
 4-in Asphalt	4 & 6-in Asphalt	
5-in CIR	6 & 8-in CCPR	
 ~4-in Exist. Asphalt	12-in FDR	
8-in Agg Base		
Subgrade	Subgrade	

I-81 Design Lessons

- Lab testing on cored materials
 - Showed CCPR and CIR were statistically the same in terms of stiffness
- FWD testing
 - Showed FDR layer coefficient could be nearly as high as CIR/CCPR


NCAT

- 2012
- 3 test sections
 - CCPR over agg base
 - CCPR over FDR
- 20 million ESALs
- Instrumented pavement sections

NCAT Test Track Sections				
N3	N4	S12		
6-inch AC	4-inch AC	4-inch AC		
5-inch CCPR	5-inch CCPR	5-inch CCPR		
6-inch Agg Base	6-inch Agg Base	8-inch FDR		
Subgrade	Subgrade	Subgrade		

NCAT Design Lessons

- FWD testing
 - Similar to I-81, showed FDR layer coefficient could be higher than what is often used
- Strain measurements
 - Low strain levels when FDR is included
- 4 inches of asphalt is sufficient cover over CCPR
 - To 20 million ESALs, but likely longer

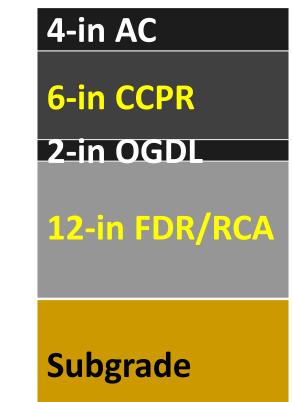
Section S12

S12

4-inch AC

5-inch CCPR

8-inch FDR


Subgrade

- Recycled content
 - Layer 1 = 12.5%
 - Layer 2 = 30%
 - Layer 3 = 100%
 - Layer 4 = 100%
- Entire cross section
 - 80% recycled

I-64 Lane Widening Recycle Designs

- New lanes
 - Import crushed concrete or RAP, stabilize in FDR process
 - OGDL, CCPR, 4 inches asphalt surface
- Existing lanes
 - FDR existing base materials
 - OGDL, CCPR, 4 inches asphalt surface

SN = 7.08, \$83/SY

12-in AC

2-in OGDL

8-in Cement Treated Agg

Subgrade

SN = 7.06, \$40-61*/SY

4-in AC

6-in CCPR

2-in OGDL

12-in FDR/RC*

Subgrade

Design Lessons Used on I-64

- Excellent performance from recycled system is possible even on a high volume pavement section
- Use of FDR
 - Improved performance for overlying CCPR
- Designed using AASHTO '93 process
 - 0.35 for CCPR, 0.25 for FDR
- Potential for significant cost savings

Considering Segments 2 and 3

- Using CCPR and FDR
 - More than a million tons of material will be recycled
 - Compared to a non-recycling design, cost savings will exceed \$15 million
- Future work
 - Instrumentation
 - Calculations to quantify greenhouse gas reductions

We bring innovation to transportation.

Thank you!

brian.diefenderfer@vdot.virginia.gov