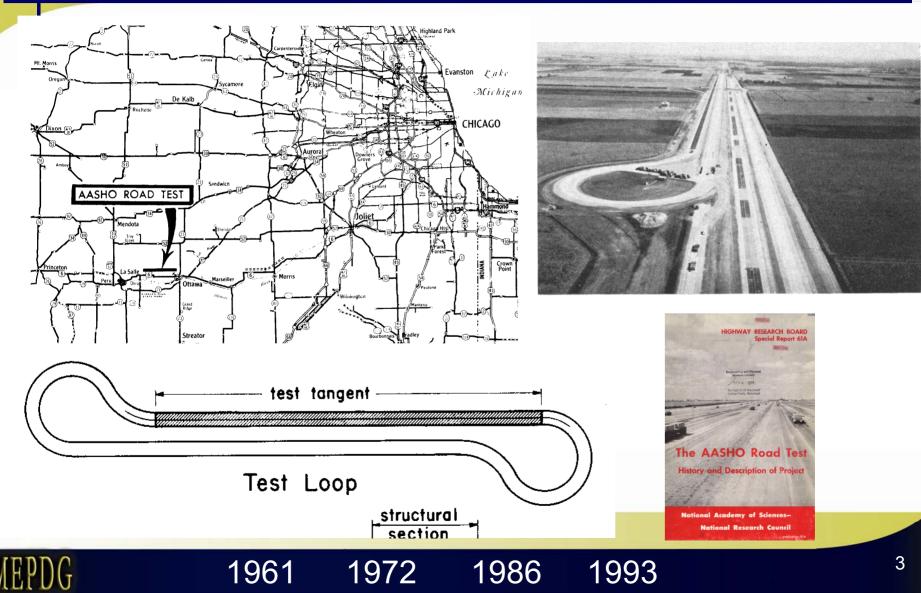


MEPDG

Arkansas' Perspective on the MEPDG

Kevin D. Hall, Ph.D., P.E. Professor and Head Dept. of Civil Engineering University of Arkansas


2 June 2008 Little Rock, AR

The Agenda...

- A Little History
- Overview of the MEPDG
- Arkansas' Approach
- Status / Direction
- Future Work
- LUNCH!

A Little Trip Down Memory Lane

1993 AASHTO Flexible "Design" materials traffic environment $SN_{HMA} = a_{HMA} * d_{HMA}$ $SN_{base} = a_{base} * d_{base} * m_{base}$ $SN_{total} \leq SN_{req'd}$ performat subgrade support ΔPSI log 10 4.2-1.5 $\log_{10} W_{18} = Z_R * S_a + 9.36 * \log_{10} (SN + 1) - 0.20 +$ $+2.32 * \log_{10} M_{R} - 8.07$ 1094 $0.40 + \frac{1}{(SN + 1)^{5.19}}$

1993 AASHTO Design Inputs

Flexible

- Reliability
- Std. Deviation
- ∆PSI
- Traffic (ESAL)
- Subgrade Resilient Modulus

MEPDG: 50-100 inputs !

Rigid

- Reliability
- Std. Deviation
- Terminal PSI
- Traffic (ESAL)
- Subgrade "k" value
- PCC Elastic Modulus
- PCC Flexural Strength
- Load Xfer Coefficient (J)
- Drainage Coefficient (C_d)

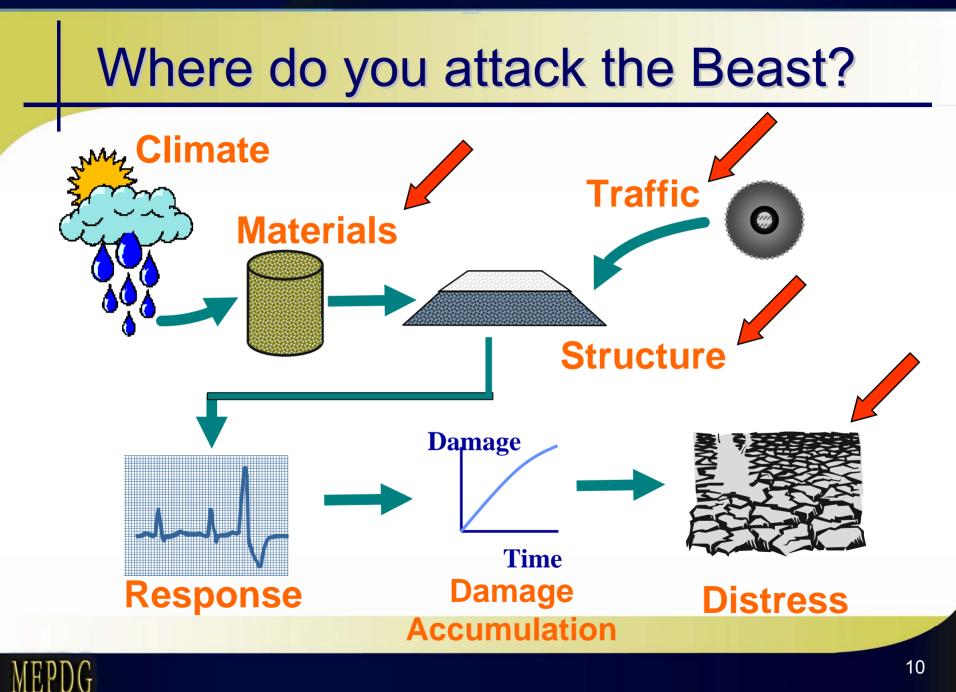
Oh, By the way...about those inputs

- Some of the 50+ inputs not currently measured or tracked
- Each input has a "level"
 - Level 1: I know everything about this input...
 - Level 2: I know something about this input...
 - Level 3: I know just a little bit about this input...

MEPDG: The 'nickle tour'

Flexible Distress Models

- Fatigue
- Rutting
- Thermal Cracking
- Ride (IRI)


Rigid Distress Models (JPCP)

- Faulting
- Cracking
- Ride (IRI)

Arkansas' MEPDG Activities

"First Look"

- Sensitivity Analyses
- Materials Characterization
 - Hot-mix asphalt
 - Portland cement concrete
 - Unbound materials
- Traffic Characterization
- Design Studies
- Local Calibration Research

Sensitivity Analyses

- Identify those inputs most critical in distress predictions
 - Provided a 'head start' to material characterization studies
- Numerous studies completed around the U.S. to date

Materials: Hot-Mix Asphalt

- Dynamic Modulus (E*)
 - 3 NMAS
 - 3 Binder Grades
 - 4 Agg Types
 - 2 Gradations

- Created catalog of E* data for "Level 1" design
- Assessed suitability of Level 3 predictive equation

Materials: PCC

- Coefficient of Thermal Expansion (CTE)
- Poisson's Ratio
- Modulus of Elasticity
 - 5 Agg types
 - Time Series Values
- Effect of Paste
- Catalog of Values
- Assessment of Predictive Relationships

Materials: Unbound

Granular Base

- 10 Agg types
- Shear properties
- Elastic & Resilient Modulus
- Poisson's Ratio

- Subgrade Soils
 - Resilient Modulus
 - "Relationship"(?) between modulus & R-value

Traffic Studies

The Good…

- 7 TTCs identified statewide
- Default monthly & hourly distribution factors suitable for use
- Developed statewide vehicle class distribution factors
- Developed statewide Axle Load Spectra
- The Bad...
 - TRAFLOAD could not be used; spreadsheets developed
- The Ugly...
 - Only 25 of 55 WIM sites suitable/comprehensive for traffic study
 - Classification data: 17 of 25 sites passed quality checks
 - > Weight data: 10 of 25 sites passed quality checks

Design Studies

Comparing designs with 'current practice'

- Aid in identifying initial performance criteria
- Developing comprehensive database structure to integrate design, construction, performance / PMS data
 - Much more on this tomorrow...
- Developing "Design Handbook"

Example: "Design Handbook"

General Traffic Inputs	? 🔀
Lateral Traffic Wander Mean wheel location (inches from the lane marking): 1 Traffic wander standard deviation (in): 10 Design lane width (ft): (Note: This is not slab width) 12	
 Number Axles/Truck Axle Configuration Wheelbase Average axle width (edge-to-edge) Oual tire spacing (in): Tire Pressure (psi) Single Tire : 120 Axle Spacing (in) Tandem axle: 51.6 Tridem axle: 49.2 Quad axle: 49.2 	
✓ OK K Cancel	

General Traffic Inputs

- ① Mean wheel location Use default value shown
- ② Traffic wander std. deviation Use default value shown
- ③ Design lane width Enter lane width in feet
- ④ Average axle width Use default value shown
- S Dual tire spacing Use default value shown
- ⑥ Tire pressure(s)
 Use default value(s) shown
- ⑦ Axle spacing(s) Use default value(s) shown

Local Calibration Efforts

Potential 'existing' section identification

- LTPP sites within Arkansas
- 'top 25' Superpave sites
 - Primarily modified binders
- Guidelines for data collection: new construction
 - Design
 - Construction
 - Performance Monitoring

Arkansas' Research Activities

"First Look"

\$176^k Sensitivity Analyses complete Materials Characterization \$330^k Hot-mix asphalt complete \$250^k Portland cement concrete ongoing Unbound materials ("complete") ???? Traffic Characterization complete \$ 81^k \$375^k **Design Studies** ongoing Local Calibration Research (3 studies)

Arkansas' Bottom Line...

