Update on GIS & PMS (PMS to AMS)

Presented by Dr. James Tsai, P.E. Georgia Institute of Technology



### Outline

- Trend on Location-based Pavement Management System (PMS)
- Asset Management System (AMS) Data Inventory Needs and Challenges
- Automatic Asset Data Collection Using Locationbased Sensor Technology (NCHRP IDEA Project)
- Demo

### **Trend on Location-based PMS**

### • GIS for PMS on supporting

- In-depth data integration on the future data and historical data (e.g. 1963 pavement design).
- Visualization and future performance forecasting/modeling/simulation (e.g. Where, when, and what to perform preservation).
- Project and network-level pavement management decisions integration.
- Network-wide project-level pavement performance study to fine-tune forecasting model.
- From PMS to Asset Management System (AMS).

### **AMS Data Inventory Needs & Challenges**

### AMS Data Inventory Needs

- Where are they located?
- When are they built?
- What are they (e.g. speed limit, etc)?
- What are their conditions?
- AMS Data Inventory Challenges
  - Very labor-intensive.
  - time consuming (i.e. Year).
  - Not getting up-to-date roadway data.
  - Very costly (million of dollars).

Automatic Asset Data Collection using Location-based Sensor Technology for (NCHRP IDEA Project, January, 2006 – July, 2007)

- Save time (i.e. month).
- Save cost (reduce at least 50%).
- Quickly get up-to-date roadway data that can be used for emergency response/recovery.

### Pavement Geometry/Sign Inventory and Mapping



# **Automatic AMS Data Inventory**

- Automatically recognize sign, pavement geometry (number of lanes, travel lane, shoulder width, edge to edge pavement width), pavement marking, guardrail, passing/no passing lanes, etc.
- Automatically compute their <u>location</u> (lat, lon; milepost).
- Data are automatically stored into a database.
- <u>Reporting</u> on asset inventory can be done.
- The data can be <u>presented with a GIS format</u> compatible with the agencies' GIS system or other location-based system such as Google Earth.

# Location-based Spatial Sensor Technology

- Innovative computer vision/image pattern recognition algorithms.
- Camera geometrical optics.
- Global Position System (GPS).
- Geographic Information System (GIS).

### Automatic Sign Inventory



#### Image containing speed limit



Processed binary image after color segmentation

| 00000         | 0 0 0 00    |
|---------------|-------------|
| 0000000000    | 00000000    |
| 0000000000    | 000000000   |
| 000 000       | 000         |
| 000           | 000 0       |
| 0000          | 00000000    |
| 00000         | 0000000000  |
| 0000          | 000         |
| 000           | 66          |
| 000           | 66          |
| 000           | 000         |
| 000000000000  | 00000000000 |
| 0000000000000 | 0000000000  |
| 60            | 0000000     |
|               |             |

Final speed limit extraction

# Automatic Sign Location Calculation





**GPS Location:** 

LAT: 36.149039055

LON: -86.863680089

Sign Location Calculated:

LAT: 36.149049212

LON: -86.863794344

# Automatic Sign Recognition





Character Recognitions

### ons

#### **Result - Speed Limit : 15 MPH**

### Automatic Database Recording and Data Management



|   |           |       |              |                           |        |      |     |      |     | /                   |               |
|---|-----------|-------|--------------|---------------------------|--------|------|-----|------|-----|---------------------|---------------|
| Ē | j, Pi     | roces | sed Results  |                           |        |      |     |      |     |                     |               |
| [ |           | MP    | Image        | SignType                  | Legend | ×1   | γ1  | x2   | γ2  | confidence          | qpsx          |
|   |           | 130   | 2F000130.JPG | speedlimit                | 45     | 1051 | 88  | 1116 | 123 | 1 <mark>/</mark> 00 | -86.858961029 |
|   |           | 184   | 2F000184.JPG | speedlim <mark>i</mark> t | 15     | 1073 | 236 | 1130 | 279 | 100                 | -86.862467148 |
|   |           | 204   | 2F000204.JPG | speedlim <mark>i</mark> t | 15     | 1054 | 145 | 1102 | 182 | 100                 | -86.863794344 |
|   |           | 214   | 2F000214.JPG | speedlimit                | 45     | 941  | 210 | 980  | 233 | 100                 | -86.864654566 |
|   |           | 332   | 2F000332.JPG | speedlimit                | 45     | 1122 | 193 | 1169 | 218 | 100                 | -86.871287980 |
|   | $\bullet$ | 766   | 2F000766.JPG | speedlimit                | 45     | 1207 | 253 | 1260 | 284 | 100                 | -86.901091216 |

### **GIS Format Data and Presentation**



Signs

# Automatic Pavement Geometry Inventory

- Extract travel lane width
- Extract shoulder pavement widths
- Extract edge to edge pavement width

# Extract # of lanes, pavement width, and shoulder width



Videolog image

#### Processed image



### Pavement Geometry Extraction - Old Hickory BV (Cont.)



# **Utilization of Technology**

- In network-level, to perform.
  - -QA/QC.
  - -Support focused asset data collection.
- In project-level, to streamline the data collection and to focus the visual inspection.

# **NCHRP IDEA Project**

- Different lighting conditions (dim, strong lighting).
- Different sign conditions.
  - Type of signs (red stop sign, speed limit, yellow warning)
  - Different sizes and fonts.
- Different roadway conditions.
  - Contrast of pavement marking.
  - Contrast between pavement and non-pavement boundary (I.e. grass)
- Type of roadway.
  - Interstate/ non-interstate; rural/urban roadways.
- Integrate the extracted data into state agencies' database.

# Q/A?

### **Contact Info**

James Tsai, Ph.D., P.E. Georgia Institute of Technology Email: <u>James.Tsai@ce.gatech.edu</u> TEL:(404)385-0904