Friction Courses in the Southeast

2006 Southeast Pavement Management and Design Conference

May 9, 2006

Overview of New-Generation Open-Graded Friction Courses

- Background
- Benefits
- Materials
- Mix design
- Construction
- Noise Reduction

History of OGFC

- First Use in 1944
- FHWA Design Procedure in 1974
- Stripping of Underlying Layer
- Quick Failure Mode (Raveling)
- Moratorium in 1980s
- Needed Improvements

- 38% Still Use
- 38% Discontinued Use
- 8% Do Not Use
- 16% Did Not Respond

Based on 1998 Su

NCHRP Synthesis 284

Driver Visibility

Regular Surface

OGFC Surface

Benefit – Reduces Hydroplaning

Rain falls onto mix and drains away through first layer

Water stands on surface – Causes backspray, increases risk of hydroplaning

Advantages

Provides Water Drainage

- -Reduce Hydroplaning
- -Improve Friction
- Improves Visibility
 - -Reduce Splash/Spray
 - Improve Visibility of Traffic Stripes
 - -Reduce Headlight Glare
- Improves Smoothness
- Reduces Noise

Selection of Materials

- High quality coarse aggregate
 Hard
 - Angular (Nearly cubical)
 - Rough textured

Gradation Range

Sieve, mm 19.0 12.5 9.5 4.75 2.36 0.075

Typical Gradations

Asphalt Binder for OGFC

 Most U.S. projects use a polymer modified asphalt PG 76-22

(Bump high temperature by two grades)

Primary Function of Stabilizer

- Prevent Draindown
- Stabilizers hold AC in place during mixing, hauling and placement
- Most stabilizers do not add significant "strength"

Types of Stabilizers

- Cellulose Fiber
 - Loose
 - Pellets
- Mineral Fiber
- Polymer
- Crumb Rubber

Fibers for Draindown

Mix Design Method

• FHWA Procedure – 1974 ?

- Surface Capacity Test
- Pyrex Bowl Method
- Modified Marshall Design ?
- Superpave Gyratory ?

Mixing Temperature Optimum AC Content

MIXING TEMPERATURE

OPTIMUM MIXING TEMPERATURE DECREASE MIXING TEMPERATURE

- Compaction lesian

National Center for Asphalt Technology NCAT AUBURN UNIVERSITY

CoreLok Density

Double Bags were Necessary

Dimensional vs CoreLok

Conclusions from Compaction Study

- N_{design} for OGFC Use 50 gyrations
- More aggregate breakdown with Marshall hammer
- CoreLok is more accurate for determining air voids than dimensional method
- Minimum air voids should be:
 - 16% for CoreLok
 - 18% for Dimensional

Test Methods

- Stone-on-Stone
- Draindown
- Permeability
- Abrasion
 - Cantabro Test
- Moisture Susceptibility
- Rutting
 - Asphalt Pavement Analyzer
 - 64°C

Draindown AASHTO T305-97

- A sample of mix is placed in a basket made of ¼" mesh
- Place basket in an oven at estimated production temperatures for 1 hour
- Draindown = Mass of binder that has drained off the aggregate

Typical Drain-down – AC Only

Drain-down with Polymer & Fiber

Increased Film Thickness

Dense

Old OGFC

New OGFC

8µm

25µm

33µm

- There are concerns that ¼" mesh may be too large for finer mixes
- A smaller mesh size was investigated

Effect of Fiber and PG on Draindown

Conclusions - Draindown

- The repeatability of the draindown test was improved by using the 2.36 mm (No. 8) wire mesh rather than the standard 4.75 mm (No. 4) mesh
- The addition of fiber stabilizers was the most significant factor in reducing binder draindown

Cantabro Test – Stone Loss

Traprock – 3 Samples Pg 67-22 @ 6.0%

Traprock @ 6.0% PG 76-22

Conclusions - Cantabro

- The Cantabro test appears to be a good method for evaluating the cohesiveness and durability of OGFC mixes
- No significant difference in Marshall (100 mm) and SGC (150 mm) Cantabro results
- Polymer-modified asphalt and rubberized asphalt significantly improves the performance of OGFC mixtures as determined by the Cantabro test

Tensile Strength after 1, 3, 5 Freeze-Thaw Cycles

Permeability

Permeability Results - Granite

			Perm.	
Gradation	Binder	AC(%)	(m/day)	
fine	67-22	6	66.8	
fine	76-22 6		70.8	
fine	76-34	6	45.2	
medium	67-22	6	68.3	
medium	76-22	6	135.2	
medium	76-34	6	49.9	
coarse	67-22	6	141.6	
coarse	76-22	6	136.6	
coarse	76-34	6	108	

National Center for Asphalt Technology

Permeability Results

- Dependent on Gradation
- Dependent on Aggregate Type (Gsb)
- Within Lab Std. Dev. 22.76 m/day

Mix Design Requirements

- VCAmix < VCA DRC
- Minimum Air Voids
 - 16 % CoreLok
 - 18 % Dimensional
- Maximum 20 % Cantabro Loss
- Maximum 0.3 % Draindown
- AASHTO T283
 - 1 Freeze/Thaw cycle
 - ◆ 80% TSR *minimum*
- Minimum Permeability 100 m/day (Coarse OGFC Only)

• Rate – 0.06-0.1 gal/sy

Typical Rolling Pattern

Breakdown2 Coverages - StaticFinal2 Coverages - Static

Noise Reduction

How Would You Design A Quiet Pavement ?

Summary of Data

Surface	Average	Low	High
PCC	101	97	106
AC	98	93	101
SMA	97	93	100
Nova Chip	98	95	99
OFGC – C	97	95	98
OGFC - F	95	92	98

Equivalent to 1/2 the Intensity

Test Section Layout

North Tangent

	N 5	N 6	N 7	N 8	N 9
Layer 1 (1 ¹ / ₄ inches)	AZ OGFC	AZ OGFC	AZ OGFC	PEM	PEM
Layer 2 (1 ¼ inches)	Track	AZ OGFC	PEM	PEM	Track

South Tangent

	S 4	S 5	S 6	S 7	S 8
Layer 1 (1 ¹ / ₄ inches)	< 4.75 SMA	4.75 SMA	9.5 SMA	4.75 DGA	9.5 DGA
Layer 2			Track		

Comparison of Surface Texture

ARIZ

Comparison of Surfaces

