# "Traffic"

2005 Southeast Pavement Management and Design Conference

June 20, 2005

Mark P. Gardner - Fugro Consultants LP Austin, Texas

## Content

Traffic Data for the ME Pavement Design Guide Input Requirements Available Tools Implementation Equipment LTPP Pooled Fund Study on Traffic **Data Collection** 







#### Traffic in the ME Pavement Design Process

 Load Spectra
 Three Design Levels
 The more involved the design, the more traffic data required.





### **Traffic Load Spectra**

Load spectra is the distribution of the number of axles by load ranges for different axles (single, tandem, tridem, quad) for various vehicle classes.

Distribution by time (e.g., concrete pavement distresses greatly influenced by hourly traffic distribution)

### Traffic Hierarchical Input Levels:

| Input<br>Level | Input Values                                                    | Knowledge of<br>Parameters |  |
|----------------|-----------------------------------------------------------------|----------------------------|--|
| 1              | Segment Specific AVC & WIM<br>Measurements                      | Good                       |  |
| 2a             | Segment Specific AVC & Regional WIM<br>Measurements             | Fair                       |  |
| 2b             | Regional AVC & WIM Measurements                                 | Fair                       |  |
| 3              | Site Specific Vehicle Count Data<br>w/Defaults – Educated Guess | Poor                       |  |

Kathy Petros, FHWA 2003



#### Traffic

| Design Life (years): 20<br>Opening Date: October, 2                                                                                                                               | 2003                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Initial two-way AADTT:<br>Number of lanes in design direction:<br>Percent of trucks in design direction (%):<br>Percent of trucks in design lane (%):<br>Operational speed (mph): | 1000        2     50.0       95.0     60 |
| Traffic Volume Adjustment:       Edit         Axle load distribution factor:       Edit         General Traffic Inputs       Edit         Traffic Growth       Class specific     |                                          |
| 🗸 ОК 🛛 🗶 Са                                                                                                                                                                       | ancel                                    |

?×



#### **Traffic Volume Adjustment Factors**

📕 Monthly Adjustment 📘 Vehicle Class Distribution 🔚 Hourly Distribution 📘 Traffic Growth Factors

Load Monthly Adjustment Factors (MAF)

Level 1: Site Specific - MAF

C Level 3: Default MAF

Monthly Adjustment Factors

🧹 ок.

🗶 Cancel

#### Export MAF to File

Load MAF From File

?×









#### Load Default AADTT

Select general category:

Principal Arterials - Interstate and Defense 💌

\* = recommended value

|   | * | TTC | Bue %  | Multi-Trailer % | Single-trailer and Single-unit/SII) Trucks                 | Class 4  | 1.3  |
|---|---|-----|--------|-----------------|------------------------------------------------------------|----------|------|
|   |   | 110 | Du3 /0 | Mana-Tranci 76  | Single-dater and Single-difie 30) Trucks                   |          | ,    |
|   | * | 5   | (<2%)  | (>10%)          | Predominately Single-trailer trucks.                       | Class E  | 48.4 |
|   | * | 8   | (<2%)  | (>10%)          | "High percentage of single-trailer truck with some single  | CI922 D  | 1    |
|   | * | 11  | (<2%)  | (>10%)          | Mixed truck traffic with a higher percentage of single-tr- | Class 6  | 10.8 |
|   | * | 13  | (<2%)  | (>10%)          | Mixed truck traffic with about equal percentages of sing   |          | 1    |
| V |   | 16  | (<2%)  | (>10%)          | Predominantly single-unit trucks.                          | Class 7  | 1.9  |
|   | * | 3   | (<2%)  | (2 - 10%)       | Predominantly single-trailer trucks                        | Class r  | 1    |
|   |   | 7   | (<2%)  | (2 - 10%)       | Mixed truck traffic with a higher percentage of single-tra | Class 8  | 6.7  |
| Γ |   | 10  | (<2%)  | (2 - 10%)       | Mixed truck traffic with about equal percentages of sing   | 01000 0  | 1    |
|   |   | 15  | (<2%)  | (2 - 10%)       | Predominantly single-unit trucks.                          | Class 9  | 13.4 |
|   | * | 1   | (>2%)  | (<2%)           | Predominantly single-trailer trucks                        |          |      |
|   | * | 2   | (>2%)  | (<2%)           | "Predominantly single-trailer trucks with a low percenta   | Class 10 | 4.3  |
|   | * | 4   | (>2%)  | (<2%)           | Predominantly single-trailer trucks with a low to modera   |          | ·    |
|   |   | 6   | (>2%)  | (<2%)           | Mixed truck traffic with a higher percentage of single-ur  | Class 11 | 0.5  |
|   |   | 9   | (>2%)  | (<2%)           | Mixed truck traffic with about equal percentages of sing   |          |      |
|   |   | 12  | (>2%)  | (<2%)           | Mixed truck traffic with a higher percentage of single-ur  | Class 12 | 0.1  |
|   |   | 14  | (>2%)  | (<2%)           | Predominantly single-unit trucks                           |          |      |
|   |   | 17  | (>25%) | (<2%)           | Mixed truck traffic with about equal single-unit and singl | Class 13 | 12.6 |
| < |   |     |        |                 | >                                                          |          |      |



🗶 Cancel



?×

AADTT distribution for the

selected General Category; Vehicle Class Percent(%)

| Т | raffic Volume | e Adjustm        | ent Factor      | 5               |               |              |                    | ?×    |  |
|---|---------------|------------------|-----------------|-----------------|---------------|--------------|--------------------|-------|--|
|   | Monthly Ac    | djustment 🛛      | Vehicle Cla     | ss Distribution | 📕 Hourly Dist | ribution 📘   | Traffic Growth Fac | ctors |  |
|   | Hourly truck  | traffic distribu | ution by period | beginning:      |               |              |                    |       |  |
|   | Midnight      | 2.3              | Noon            | 5.9             |               |              |                    |       |  |
|   | 1:00 am       | 2.3              | 1:00 pm         | 5.9             |               |              |                    |       |  |
|   | 2:00 am       | 2.3              | 2:00 pm         | 5.9             |               |              |                    |       |  |
|   | 3:00 am       | 2.3              | 3:00 pm         | 5.9             |               |              |                    |       |  |
|   | 4:00 am       | 2.3              | 4:00 pm         | 4.6             |               |              |                    |       |  |
|   | 5:00 am       | 2.3              | 5:00 pm         | 4.6             |               |              |                    |       |  |
|   | 6:00 am       | 5.0              | 6:00 pm         | 4.6             |               |              |                    |       |  |
|   | 7:00 am       | 5.0              | 7:00 pm         | 4.6             |               |              |                    |       |  |
|   | 8:00 am       | 5.0              | 8:00 pm         | 3.1             |               |              |                    |       |  |
|   | 9:00 am       | 5.0              | 9:00 pm         | 3.1             |               | Note: The    | hourly             |       |  |
|   | 10:00 am      | 5.9              | 10:00 pm        | 3.1             |               | distribution | must total 100%    |       |  |
|   | 11:00 am      | 5.9              | 11:00 pm        | 3.1             |               | Total:       | 100                |       |  |
|   |               |                  |                 |                 |               |              |                    |       |  |
|   |               |                  |                 | ,               |               |              |                    |       |  |
|   |               |                  | ✓               | OK              | 🗶 Cancel      |              |                    |       |  |

**i** g R O

| Monthly Ad               | justment   🗖 Vel                                     | ractors<br>hicle Class Distribu | ition 🔲 Hourly Distribution 🔲 Traffic Growth Factors                       |
|--------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|
| Opening D<br>Design Life | ate: Octol<br>e (years): 20<br>lass specific traffic | per, 2003<br>growth             | AADTT: 1000<br>% Traffic Design Direction: 50<br>% Traffic Design Lane: 95 |
|                          | Rate (%)                                             | Function                        | Default Growth Function                                                    |
| Class 4                  | 3                                                    | Linear                          | C No Growth                                                                |
| Class 5                  | 3                                                    | Linear                          |                                                                            |
| Class 6                  | 3                                                    | Linear                          | 🗢 Linear Growth                                                            |
| Class 7                  | 3                                                    | Linear                          | Compound Growth                                                            |
| Class 8                  | 3                                                    | Linear                          |                                                                            |
| Class 9                  | 3                                                    | Linear                          | Default growth rate (%)                                                    |
| Class 10                 | 3                                                    | Linear                          |                                                                            |
| Class 11                 | 3                                                    | Linear                          |                                                                            |
| Class 12                 | 3                                                    | Linear                          |                                                                            |
| Class 13                 | 3                                                    | Linear                          | View Growth Plots                                                          |
| Note: Vehicle            | -class distribition f                                | actors are needed               | I to view the effects of traffic growth.                                   |



#### **Axle Load Distribution Factors**



| Axle Load Distribution   |                  | View                             | - Aulo Tupos  |
|--------------------------|------------------|----------------------------------|---------------|
| C Level 1: Site Specific | Export Axle File | C Cumulative Distribution        | • Single Ayle |
| C Level 2: Regional      | <b>_</b>         | <ul> <li>Distribution</li> </ul> | C Tandem Axle |
| Level 3: Default         | 💼 Open Axle File | View Plot                        | C Tridem Axle |
|                          |                  |                                  | e dage white  |

#### -Axle Factors by Axle Type-

| Season  | Veh. Class | Total  | 3000  | 4000  | 5000  | 6000  | 700  |
|---------|------------|--------|-------|-------|-------|-------|------|
| January | 4          | 100.00 | 1.8   | 0.96  | 2.91  | 3.99  | 6.8  |
| January | 5          | 100.00 | 10.05 | 13.21 | 16.42 | 10.61 | 9.22 |
| January | 6          | 100.00 | 2.47  | 1.78  | 3.45  | 3.95  | 6.7  |
| January | 7          | 100.00 | 2.14  | 0.55  | 2.42  | 2.7   | 3.21 |
| January | 8          | 100.00 | 11.65 | 5.37  | 7.84  | 6.99  | 7.99 |
| January | 9          | 100.00 | 1.74  | 1.37  | 2.84  | 3.53  | 4.93 |
| January | 10         | 100.00 | 3.64  | 1.24  | 2.36  | 3.38  | 5.18 |
| January | 11         | 100.00 | 3.55  | 2.91  | 5.19  | 5.27  | 6.32 |
| January | 12         | 100.00 | 6.68  | 2.29  | 4.87  | 5.86  | 5.97 |
| January | 13         | 100.00 | 8.88  | 2.67  | 3.81  | 5.23  | 6.03 |
| 1       |            | 100.00 | 14.0  | 0.00  | 0.01  | 0.00  |      |



#### **General Traffic Inputs**

-Lateral Traffic Wander

Mean wheel location (inches from the lane marking):

Traffic wander standard deviation (in):

Design lane width (ft): (Note: This is not slab width)

| Number Axles/Truck | eelbase |
|--------------------|---------|
|--------------------|---------|

|          | Single | Tandem | Tridem | Quad |
|----------|--------|--------|--------|------|
| Class 4  | 1.62   | 0.39   | 0      | 0    |
| Class 5  | 2      | 0      | 0      | 0    |
| Class 6  | 1.02   | 0.99   | 0      | 0    |
| Class 7  | ]1     | 0.26   | 0.83   | 0    |
| Class 8  | 2.38   | 0.67   | 0      | 0    |
| Class 9  | 1.13   | 1.93   | 0      | 0    |
| Class 10 | 1.19   | 1.09   | 0.89   | 0    |
| Class 11 | 4.29   | 0.26   | 0.06   | 0    |
| Class 12 | 3.52   | 1.14   | 0.06   | 0    |
| Class 13 | 2.15   | 2.13   | 0.35   | 0    |





🗶 Cancel

?×

18

10

12

| Gei | neral Traffic Inputs                               |                      | ?    | × |
|-----|----------------------------------------------------|----------------------|------|---|
| ٦L  | Lateral Traffic Wander                             |                      |      |   |
|     | Mean wheel location (inches from th                | ie lane marking):    | 18   |   |
|     | Traffic wander standard deviation (ir              | n):                  | 10   |   |
|     | Design lane width (ft): (Note: This is             | not slab width)      | 12   |   |
|     | 🗖 an a' tha an a' 🗖 Aula Care                      |                      |      |   |
|     | Number Axles/Truck Axle Confi                      | iguration   🔛 Wheelb | oase |   |
|     | Average axle width (edg<br>outside dimensions,ft): | je-to-edge) 8.5      |      |   |
|     | Dual tire spacing (in):                            | 12                   |      |   |
|     | Tire Pressure (psi)                                | Axle Spacing (in)    |      |   |
|     | Single Tire : 120                                  | Tandem axle:         | 51.6 |   |
|     |                                                    | Tridem axle:         | 49.2 |   |
|     | Dual lire: 120                                     | Quad axle:           | 49.2 |   |
|     |                                                    |                      | ,    |   |
|     |                                                    |                      |      |   |



| General rame indu     |                |     |
|-----------------------|----------------|-----|
| Sellerat Harrie IIIpa | rat i ramic in | Dut |

? ×

| - Lateral Traffic Wander-                                                                             |                                               |                                     |                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|------------------------------------|--|--|--|--|
| Mean wheel location (inches from the lane marking):                                                   |                                               |                                     |                                    |  |  |  |  |
| Traffic wander standard dev                                                                           | viation (in):                                 |                                     | 10                                 |  |  |  |  |
| Design lane width (ft): (Note                                                                         | : This is not sla                             | b width)                            | 12                                 |  |  |  |  |
| 📕 Number Axles/Truck 📘 A                                                                              | xle Configuratio                              | n 🗖 Wheelb                          | ase                                |  |  |  |  |
| Wheelbase distribution informa<br>refers to the spacing between l<br>truck-tractors or heavy single u | tion for JPCP to<br>the steering and<br>nits. | p-down cracki<br>d the first device | ng. The wheelbase<br>e axle of the |  |  |  |  |
|                                                                                                       | Short                                         | Medium                              | Long                               |  |  |  |  |
| Average Axle Spacing (ft)                                                                             | 12                                            | 15                                  | 18                                 |  |  |  |  |
| Percent of trucks (%):                                                                                | 33.0                                          | 33.0                                | 34.0                               |  |  |  |  |
|                                                                                                       |                                               |                                     |                                    |  |  |  |  |
|                                                                                                       |                                               |                                     |                                    |  |  |  |  |
|                                                                                                       |                                               |                                     |                                    |  |  |  |  |
| 1                                                                                                     | ок                                            | 🗶 Cancel 🛛                          |                                    |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                 |                                               |                                     |                                    |  |  |  |  |



# That's a LOT of data entry !!!

# Fear not...there are tools to help you.



# Tools

TRAFLOAD - NCHRP 1-39
WIMNet
Atlas
Others ??



# Implementation

Institutional Barriers – Materials, Traffic, Designers not talking to each other. Institutional Inertia Getting things started. Changing the way things have been done. Cost Time - one estimate is 5 yr effort Tools to go from raw data to input values.



"If you're riding ahead of the herd, take a look back every now and then to make sure it's still there."

Will Rogers



## **An Implementation Plan**

Development of state-specific default values (TTC, Class and hourly distributions, load spectra, etc)
 Review availability of existing traffic data, and plan future monitoring efforts.
 Changes to data management.



# So what does this mean for Data Collection ? Traffic Hierarchical Input Levels:

| Input<br>Level | Input Values                                                    | Knowledge of<br>Parameters |
|----------------|-----------------------------------------------------------------|----------------------------|
| 1              | Segment Specific AVC & WIM<br>Measurements                      | Good                       |
| 2a             | Segment Specific AVC & Regional WIM<br>Measurements             | Fair                       |
| 2b             | Regional AVC & WIM Measurements                                 | Fair                       |
| 3              | Site Specific Vehicle Count Data<br>w/Defaults – Educated Guess | Poor                       |
|                | / / //                                                          |                            |

### Typical Design - Level 2

### You will need....

- Section specific volume and classification data (hourly distribution), and default load spectra (by TWRG).
- Do you already have it?
  - Possibly...depending on the number and distribution of classification and WIM site locations



### **Typical Design - Level 2**

- How much effort will be required to get it??
  - Site specific data
    - Consistent traffic patterns one week of classification data.
    - Variable traffic Representative samples
  - TTC and TWRG for state.
  - Automation will significantly reduce LOE.



The ME pavement design process is going to require greater attention to traffic data than before.....

e

# Equipment....

### **Piezo Ceramic**

Least Expensive Typically requires more calibration activity Non-linear load response Temperature sensitive response





# Quartz Piezo

Small and relatively easy to install Relatively inexpensive Linear load response Temp. stable





# **Bending Plate**

 Relatively expensive
 Generally more reliable.





# LTPP Pooled Fund Traffic Study

TPF-5(004)

# What is TPF-5(004)?

Partnership with the States to get a minimum 5 years of research quality data at SPS-1, -2, -5, -6 and - 8 sites Contracts managed by FHWA to provide a mechanism for states to fund traffic data acquisition activities at these **SPS** sites



# **Research Quality Definition**

| SPS-1, -2, -5, -6 & -8 | 95 Percent Confidence            |
|------------------------|----------------------------------|
|                        | Limit of Error                   |
| Single Axles           | ± 20 percent                     |
| Axle Groups            | ± 15 percent                     |
| Gross Vehicle Weight   | ± 10 percent                     |
| Vehicle Speed          | ± 1 mph (2 kph)                  |
| Axle spacing           | ± 0.5 ft (150 mm)                |
| Classification         | <= 2% Unclassified               |
|                        | <= 2% Heavy trucks misclassified |



# Assessments - What do they produce?

Recommendation to validate or not to validate

#### Work includes -

- Pavement evaluation (distresses impacting trucks, profile via WIMIndex)
- Checking equipment condition
- Reviewing ability to correctly classify vehicles
- Quantifying data needs
- Suggestions for equipment and or pavement repair or replacement



### **Assessment Statistics**

34 completed to date
 No sites completely ready for validation

 1 - SPS-8 requires classification validation
 only

 & 6 - Conditionally (equipment repair with pavement reasonable)



Assessment Recommendations Repair or replace sensors – 1/3 Pavement improvements – 90% For smoothness – 90% ✤ For distress – 15% Improve classification algorithm – 40% Overlapping class definitions – 5%





# A note on quality....

A little good data is better than a lot of poor quality data....

- In implementation of a data collection plan, include QC/QA in the planning.
- Typically you'll be working on an expansion of an expansion...try to make base data representative



# "Never miss a good chance to shut up...."

2

Will Rogers