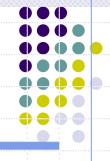
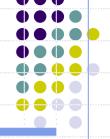
Timing of Pavement Preservation Treatments

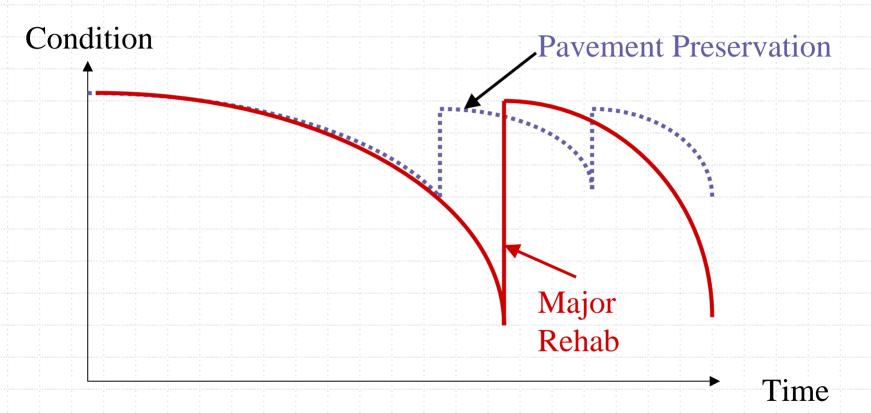
Katie Zimmerman Applied Pavement Technology, Inc. kzimmerman@pavementsolutions.com



Presentation Topics

- Characteristics of Pavement Preservation Programs
- Applying Treatments at the Right Time
- Treatment Timing Tools


Pavement Preservation Programs



- Activities undertaken to provide and maintain serviceable roadways using:
 - Corrective maintenance
 - Preventive maintenance
 - Minor rehabilitation
- Cost-effective strategies for maintaining roadways

Cost-Effectiveness of Pavement Preservation

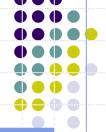
Total Life Cycle Cost


Without Preventive Maintenance

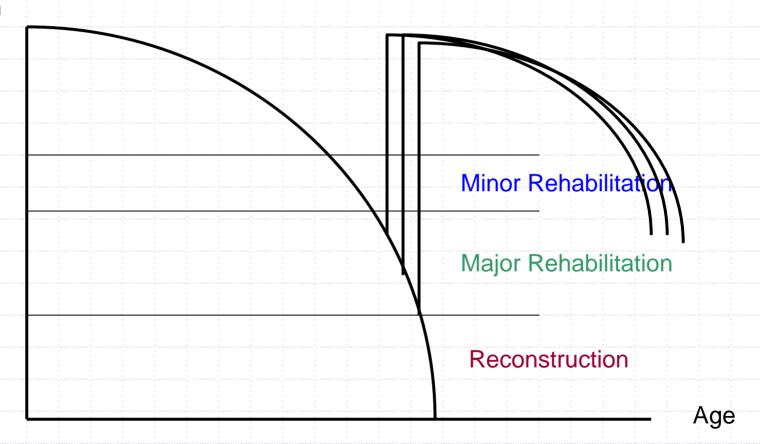
4 to 6 times difference

Pavement Preservation Slogan

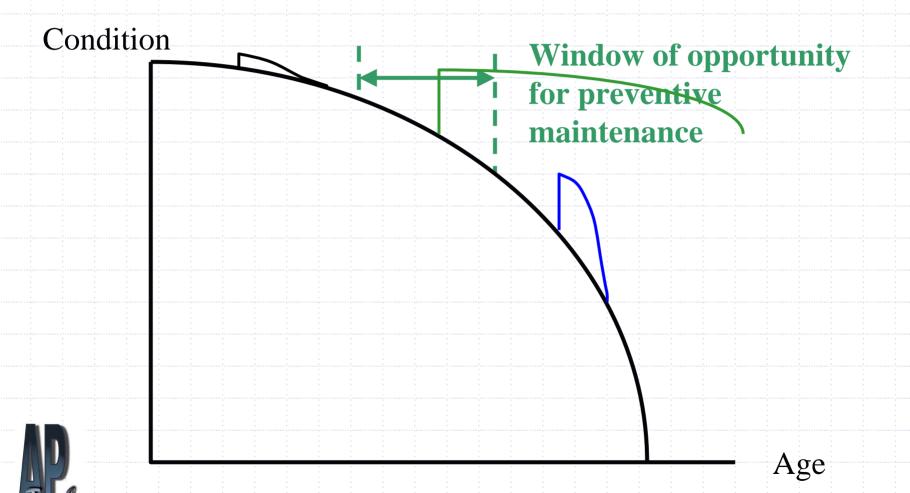
Applying the right treatment


... To the right road

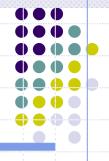
... At the right time



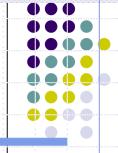
Rehabilitation Treatment Timing



Condition

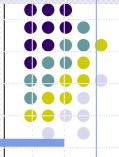


Window of Opportunity


"Good Candidates" for Preventive Maintenance

- No structural failures
- Minimal distress (extent and severity)
- Relatively young in age
- Few historical problems with similar projects
- Treatment can be constructed before distress becomes too extensive (considers rate of deterioration and contracting period)

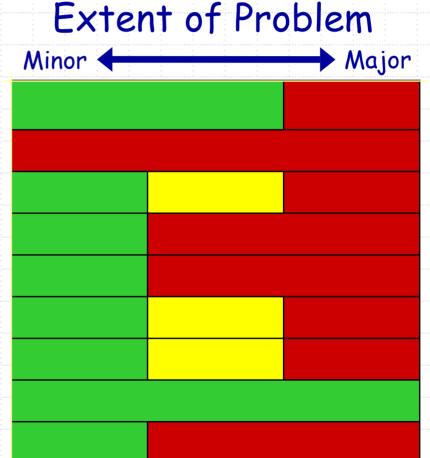
Maximum Allowable Distresses HMA Pavements


Distress Type

Fatigue Cracking Linear & Block Cracking "Stable" Rutting Raveling Flushing/Bleeding Roughness Friction Loss Moisture Damage Shoving

Extent of Problem Minor -Major

Maximum Allowable Distresses PCC Pavements



Distress Type

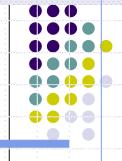
Linear Cracking
Corner Breaks
Trans. Joint Faulting
Joint Spalling
D-Cracking

Pumping Roughness Friction Loss

Surface Distress

Sample Treatment Guidelines

HMA Distresses	s Low		Moderate		High	
	Occasional	Frequent	Occasional	Frequent	Occasional	Frequent
Fatigue Cracking	Fog Seal, Do Nothing	Fog Seal, Chip Seal	Chip Seal, Fog Seal, Thin HMA Overlay	Chip Seal, Slurry Seal	Patching, Chip Seal, Thin HMA Overlay	Recon, Patching
Edge Cracking	Do Nothing, Crack Seal or Fill	Crack Seal or Fill, Do Nothing	Crack Seal, Patching	Crack Seal, Patching	Patching	Patching
Longitudinal Cracking	Crack Seal, Do Nothing	Crack Seal, Chip Seal, Do Nothing	Crack Seal, Chip Seal	Crack Seal, Chip Seal	Patching, Crack Seal, Chip Seal	Chip Seal, Crack Seal, Patching
Bleeding Bleeding	Do Nothing	Do Nothing, Chip Seal	Chip Seal, Do Nothing, Mill	Chip Seal, Mill	Mill + Chip Seal	Mill + Chip Seal, Thin HMA Overlay

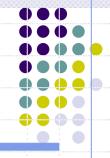

Combination of Distress

	$0 \bullet 0$		
	0.00		
	0 0		
	••••	•	
i	· · · · · · · · · · · · · · · · · · ·		

Distress	Combination of Distress (Read Vertically)					
From Haas, Hudson, Zanie						
PSI<4.0	Ν	N				
Major Cracking	N	N				
Rutting > 30%	Y	N				
Raveling > 30%		Y				
Feasible Options	3 in O/L, Mill + chip, Recycle + O/L, Reconstruct	1 in O/L, Recycle + O/L, Mill + O/L, Chip Seal				

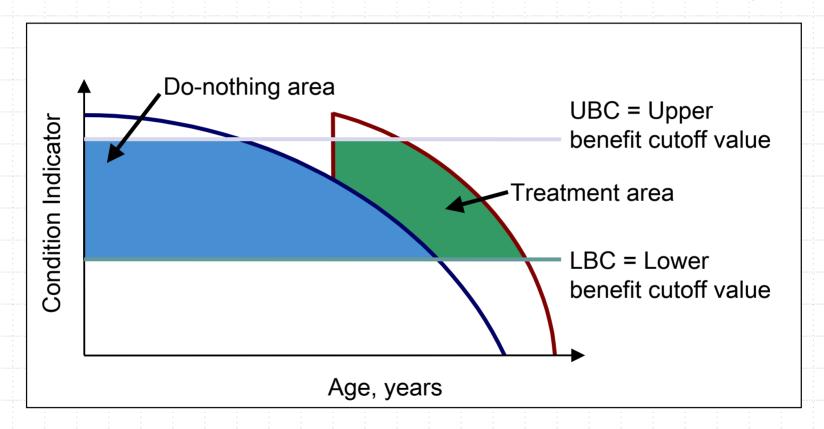
New York State Initial Guidelines for Treatment Application Cycles

		Appl. Cycle,
	Treatment Type	yrs
	PCC pavement joint and crack sealing	8
	HMA pavement crack sealing	4
	Thin HMA overlays (38 mm [1.5 in])	12
•	Surface treatments of HMA pavements	4
•	Surface treatments of shoulders	4
•	Clean drainage	10



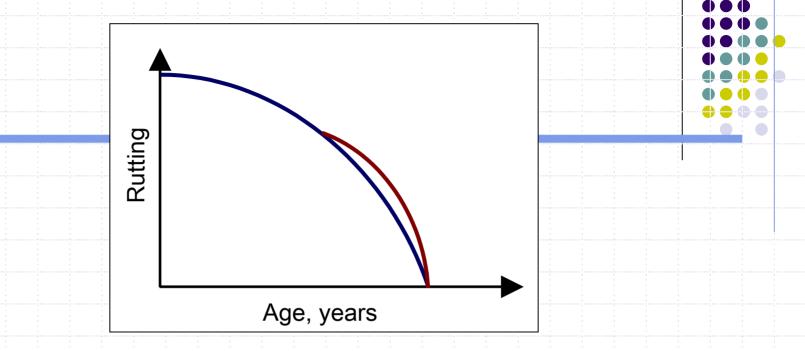
Timing for First Application

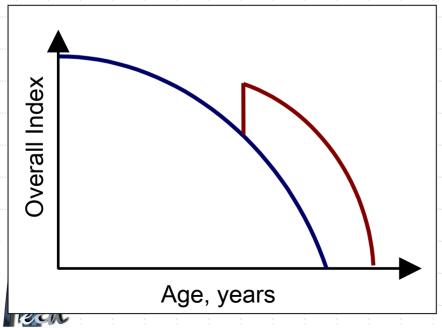
- South Dakota
 - ► Crack sealing: 1 to 2 years
 - Chip seal: 3 years
- Montana
 - ► Chip seal: 6 to 8 years
 - ► Thin overlay: 10 to 12 years

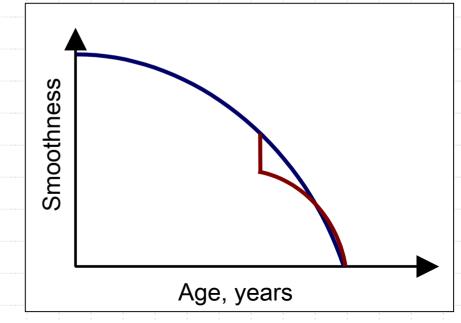


Analytical Tool to Determine Optimal Timing - OPTime

- Developed during NCHRP 14-14, Optimal Timing for Preventive Maintenance
- Macro-driven Excel workbook
- Evaluates benefits and costs associated with a preventive maintenance treatment
- Benefits can be evaluated in terms of more than one condition index
- Detailed or simple analyses available


Benefit





Benefit Value = Treatment Area

Do-Nothing Area

- Calculate benefit area for each condition measure
- Normalize benefit as percent of do-nothing area
- Assign "benefit weighting factors" to different condition measures

Compute and sum

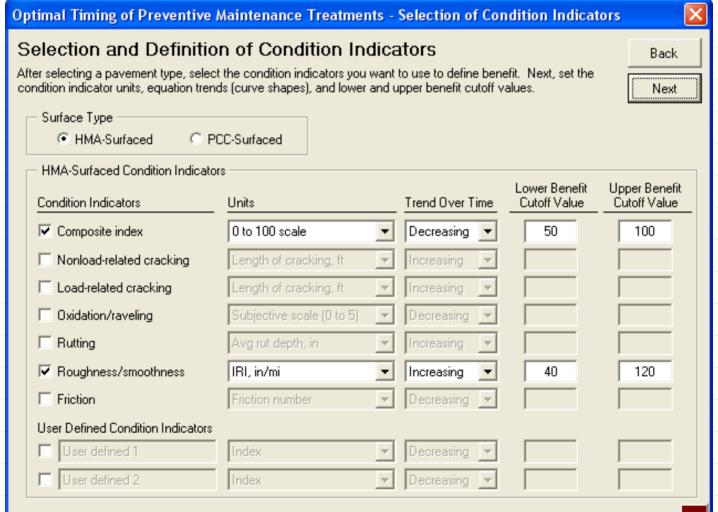
Condition Indicator	Benefit Value (% of do nothing)	Benefit Weighting Factor	Benefit WF Percentage	Overall Benefit Contribution (%)
Rutting	27	60	0.6	16.2
Cracking	12	30	0.3	3.6
Friction	47	10	0.1	4.7
TOTAL	-	100	1.0	24.5


Costs

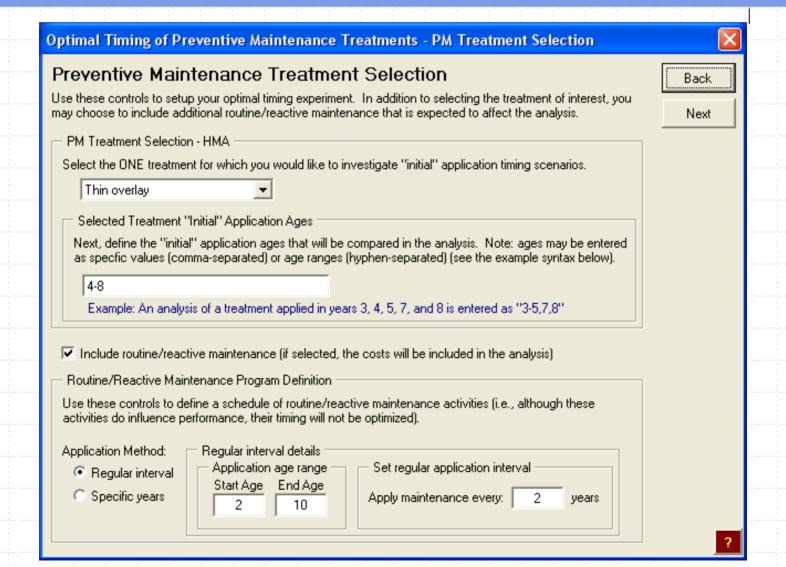
- Treatment construction
- Rehabilitation
- Work zone delays
- Additional routine maintenance

After benefits and costs have been defined, a benefit/cost (B/C) ratio is determined for each possible application timing

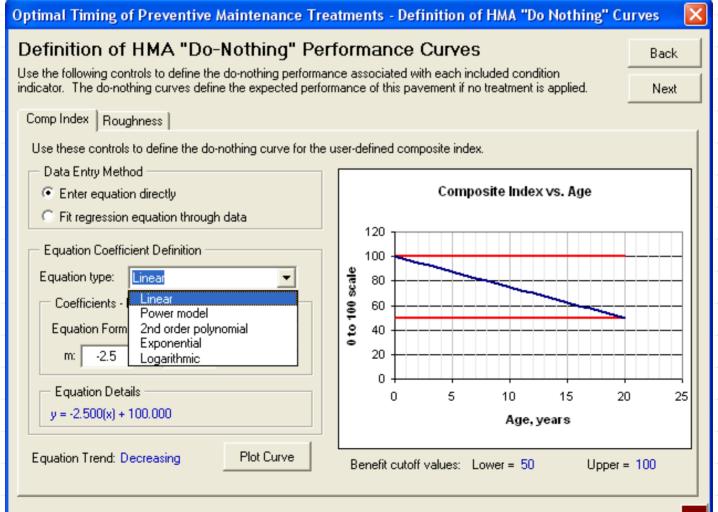
Effectiveness Index (EI)


$$EI_{i} = \frac{(B/C)_{i}}{(B/C)_{max}} \times 100$$

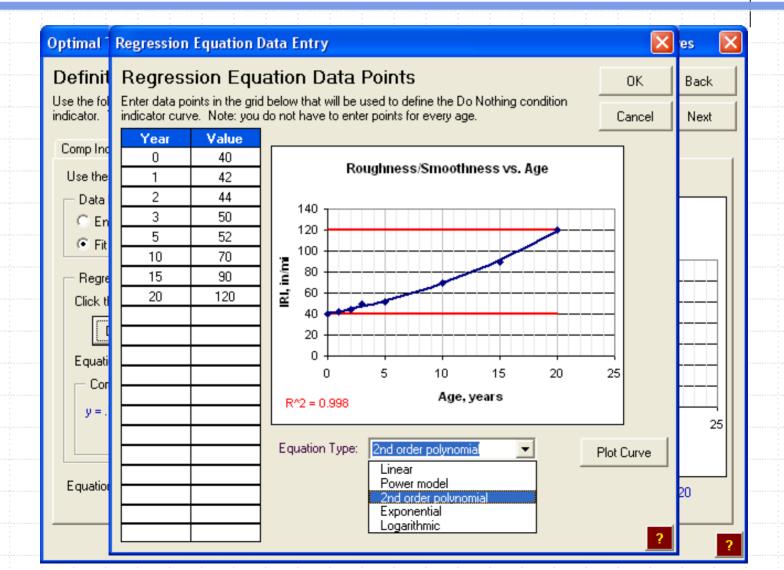
i = Index associated with current timing scenario


B/C = Benefit / cost ratio

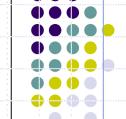
Condition Indicators

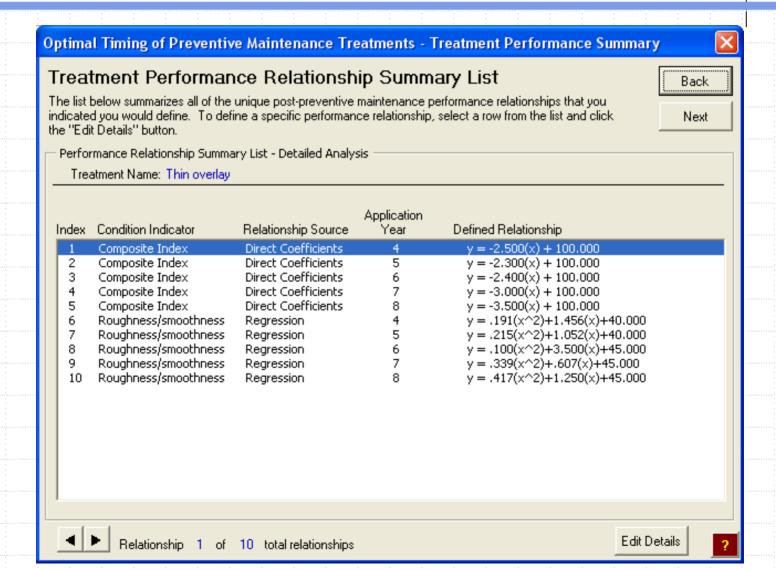


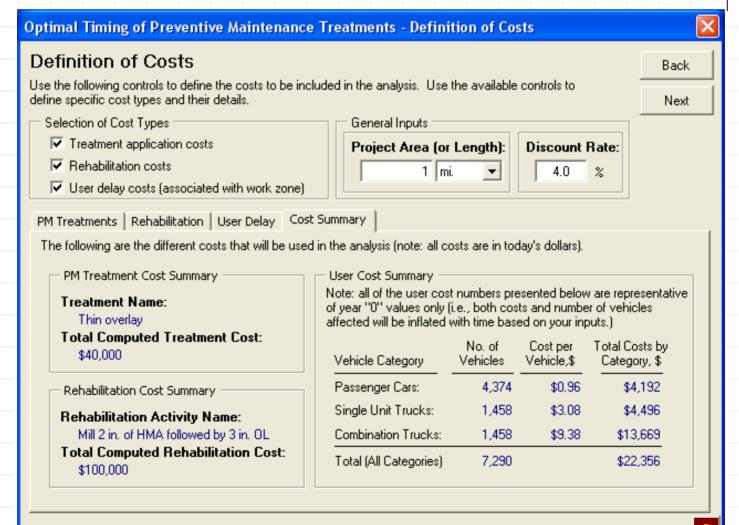
Treatment Selection



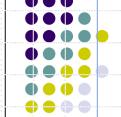
Do-Nothing Curves: Direct Equation




Do-Nothing Curves: Regression



Example Analysis SessionTreatment Performance Summary List



Cost Summary

Example Analysis Session Benefit Weighting Factors

Optimal Timing of Prevent	ive Maintenance Treatments	- Benefit Weighting Factors					
Benefit Weighting Factors Back							
If mutilple condition indicators are selected, an individual benefit is calculated for each and they are all used to determine optimal treatment timing. Weighting factors are used to differentially weight the individual benefits associated with the included condition indicators. For consistency, all benefit weighting factors must total to 100.							
HMA-Surfaced Pavement - Benefit Weighting Factors							
Condition Indicator	Benefit Weighting Factors	Click on the "Conduct Analysis" button to run the analysis.					
Composite index	75	Conduct Analysis					
Nonload-related cracking	0						
Load-related cracking	0						
Oxidation/raveling	0						
Rutting	0						
Roughness/smoothness	25						
Friction	0						
User defined 1	0						
User defined 2	0						
TOTAL	100						
(Note: the individual benefit	weighting factors must total to 100.)	Close Workbook					

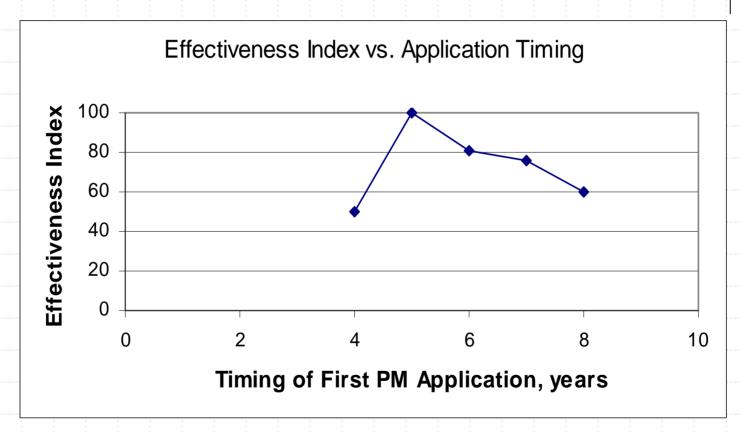
Output Data

Pavement Surface Type: Treatment Type: Application Years: Expected Do-Nothing Service Life (yrs): HMA Thin overlay 4, 5, 6, 7, 8 20.0

Benefit Summary

		Individual Benefit Summary		
Benefit Ranking Factors =>		75	25	
Application		Composite	Roughness/	
Age, yrs	Total Benefit	Index	Smoothness	
4	0.11	0.08	0.22	
5	0.22	0.20	0.31	
6	0.19	0.21	0.12	
7	0.18	0.16	0.25	
8	0.15	0.13	0.20	

Cost Summary


Effectiveness Summary

Application Age, yrs	Effectiveness Index	Total Benefit	EUAC, \$	Expected Life, yrs	Expected Extension of Life, yrs
4	50.40	0.11	\$7,366	21.0	1.0
5	100.00	0.22	\$7,269	22.0	2.0
6	80.50	0.19	\$7,487	21.0	1.0
7	76.07	0.18	\$7,765	21.0	1.0
8	60.00	0.15	\$8,028	20.0	0.0

Graphical Output

Wrap-Up

- Pavement preservation programs can be very cost-effective when treatments are used at the right time
- Determining the right time to apply preventive maintenance treatments is a challenge
 - Construct test sections
 - Monitor pavement conditions
 - Update agency guidelines
- Be sure preventive maintenance treatments are used in a preventive manner
 - OPTime can be used to assist

