Perpetual Pavement Design

Southeast Pavement Management and Design Conference June 21, 2005 Savannah, Georgia

Goal of Perpetual Pavement Design

- Design the structure such that there are no deep structural distresses
 - Bottom up fatigue cracking
 - Structural rutting
- All distresses can be quickly remedied from surface
- Result in a structure with 'Perpetual' or 'Long Life'

Surface Distresses Only

How do you compute pavement response?

- Flexible pavements consist of multiple layers
- Using physical principles, we can calculate stresses beneath loads

Linear Elastic System Assumptions

- Many constitutive models available
- Linear Elastic Most Common
- Assumptions
 - Homogeneity
 - Finite thickness
 - Infinite in horizontal direction
 - Isotropic
 - Full friction between layers
 - No surface shear forces

Two-Layer Systems

- Analytical solution derived by Burmister (1940's)
- Importance of stiffness ratio (E₁/E₂)

Two Layer System – Shear Stress

Two-Layer System – Tensile Stresses

Three Layer Systems

- Much more complicated system!
- Initially solved for a limited set of parameters due to computational limitations

$$- \mu = 0.5$$

Limited number of locations

Materials

Figure 1. How an Elastic Material Behaves.

Figure 1. Definitions of E and μ .

Dynamic Modulus Test

Witczak Equation for E*

$$\log E = -1.249937 + 0.29232 \rho_{200} - 0.001767 (\rho_{200})^2 - 0.002841 \rho_4 - 0.058097 V_a$$

$$-0.802208 \left(\frac{V_{beff}}{V_{beff} + V_{a}} \right) + \frac{3.871977 - 0.0021 \rho_4 + 0.003958 \rho_{38} - 0.000017 (\rho_{38})^2 + 0.005470 \rho_{34}}{1 + e^{(-0.6033^{\circ}3 - 0.313351 \log(f) - 0.393532 \log(\eta))}}$$

- bitumen viscosity (dynamic shear rheometer)
- loading frequency
- air voids
- effective bitumen content

- cum. % retained on 19-mm sieve
- cum. % retained on 9.5-mm sieve
- cum. % retained on 4.76-mm sieve
- % passing the 0.075-mm sieve

HMA Modulus Versus Temperature

Soil Modulus Testing

Dynamic Cone Penetration

Effect of Moisture Content

FWD Testing

Backcalculation

E = f(Load, Pressure, Deflection, Distance)

AASHO Road Test Trucks

FIGURE 3 AASHO Road Test truck traffic.

Dual Tire

Tandem

Tridem

Figure 2. Layered Elastic Model Representation of a Pavement.

Figure 4. A Comparison of Measured Strains and Computed Strains at Mn/ROAD. (After Timm et al., 1998, Development of Mechanistic-Empirical Pavement Design, *Transportation Research Record No.* 1629, Transportation Research Board, Washington, DC.)

Thickness vs. Tensile Strain

HMA Thickness

HMA Modulus

Thickness vs. Compressive Strain

HMA Thickness

Traditional M-E Design

Perpetual Pavement Design

Normal Fatigue Testing Results Versus Endurance Limit Testing

Transfer Functions

Miner's Hypothesis

- Provides the ability to sum damage for a specific distress type
- $D = \sum n_i/N_i \le 1.0$

where n_i = actual number of loads during condition i

N_i = allowable number of loads during condition i

Probabilistic Design - Monte Carlo Simulation

% Below Threshold

 Design should have high % below threshold

'Damage Computation'

- For responses exceeding threshold, compute N using transfer function
 - User defined
- Calculate damage accumulation rate
 - Damage / MESAL

Estimated Long Life

- Convert damage rate into an estimated life
 - Use traffic volume and growth
 - Calculate when damage = 0.1
 - Use for Low Vol. Roads (t ~30 yrs.)

Low Volume Traffic

10 - 20/wk

3 - 5/wk

10 - 20/wk

PerRoad 2.4

- Sponsored by APA
- Developed at Auburn University / NCAT
- M-E Perpetual Pavement Design and Analysis Tool
- Help File is the Users Manual
- Press F1 at Any Time for Help File

