Perpetual Pavement Design

An Introduction to the PerRoad Program

Gary L. Fitts, P.E. Asphalt Institute San Antonio, Texas

Perpetual Asphalt Pavements

- Philosophy: to avoid or indefinitely delay damage associated with traffic load repetitions
 - Structural rutting (subgrade permanent deformation)
 - Traditional fatigue cracking, starting at the bottom of the asphalt layer
- Practice: determine layer thickness and materials requirements to fulfill assumptions
 - Establish design and acceptance criteria for pavement materials to avoid:
 - Rutting in the asphalt layer
 - Top-down cracking
 - Low temperature cracking
 - Moisture damage

- Sponsored by APA
- Developed at Auburn University / NCAT
- M-E Perpetual Pavement Design and Analysis Tool

🕌 Pi	erRoa	ıd 2.4			-	. 🗆 🗙
<u>F</u> ile	<u>I</u> nput	<u>O</u> utput	<u>H</u> elp			
			erRoa	4		

User's Guide Available

 At booth or pdf can be downloaded
 Compiles the help files included in the program

www.asphaltalliance.com

A Guide To PerRoad 2.4 by David E. Newcomb

for

PerRoad Perpetual Pavement Software

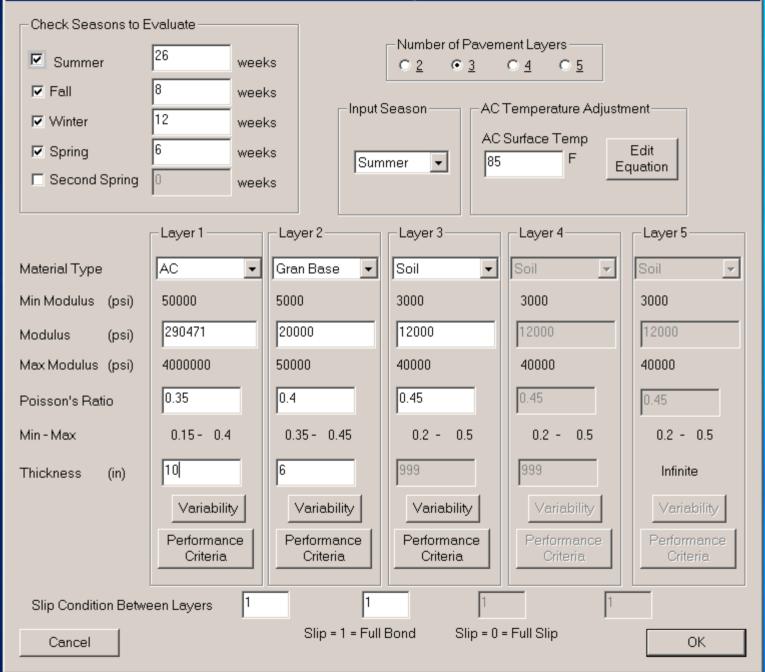
developed by Professor David H. Timm

Department of Civil Engineering National Center for Asphalt Technology Auburn University

Perpetual Pavement Design Software

itructural and Seasonal I	nformation (F1 for I	Help)				Loading Con	ditions (F1 for Help)						
Check Seasons to E Summer (Norma Fall (Wet Condition Winter (Frozen Condition Spring (Thaw Condition Second Spring	l Condition) 26 on) 8 ondition) 12	weeks weeks weeks weeks weeks	Number of Pavemen © 2 C 3 C Input Season Summer	AC Temperature A AC Surface Temp 85 F	· ·	0-0	Configurations (Ch Single	<mark>00-00</mark>	Apply) ✓ Tandem	00=00	I⊄ Tridem	00	I Steer
Material Type Min Modulus (psi) Modulus (psi) Max Modulus (psi) Poisson's Ratio Min - Max Thickness (in)	Layer 1 AC 50000 290471 2500000 0.35 0.15 - 0.4 1 Variability Performance Criteria	Layer 2 Soil 3000 12000 40000 0.45 0.2 - 0.5 999 Variability Performance Criteria	Layer 3 Soil 3000 12000 40000 0.45 0.2 - 0.5 999 Variability Performance Criteria.	Layer 4 Soil 3000 12000 40000 0.45 0.2 - 0.5 999 Variability Performance Criteria.	Layer 5 Soil 3000 12000 40000 0.45 0.2 - 0.5 Infinite Variability Performance Criteria	Axle Weight kip 0-2 2-4 4-6 6-8 8-10 10-12 12-14 Import L	Axles / 1000 Heavy Vehicles 0 0 0 0 0 0 0 0 0 0 0	Axle Weight kip 14-16 16-18 18-20 20-22 22-24 24-26 26-28 Save Load	Axles / 1000 Heavy Vehicles 0 0 0 0 0 0 0 0 0 0 Spectra	Axle Weight 28-30 30-32 32-34 34-36 38-38 38-40 40-42	Axles / 1000 Heavy Vehicles	Axle Weight 42-44 44-46 46-48 48-50 50-52 52-54 54+ ancel	Axles / 1000 Heavy Vehicles 0 0 0 0 0 0 0 0 0
Cancel					ОК								

www.asphaltalliance.com

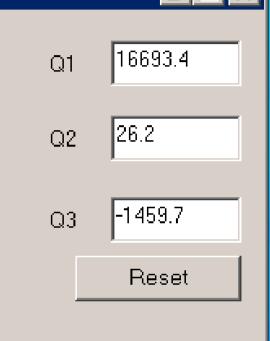

Help File

Help, Contents and Index

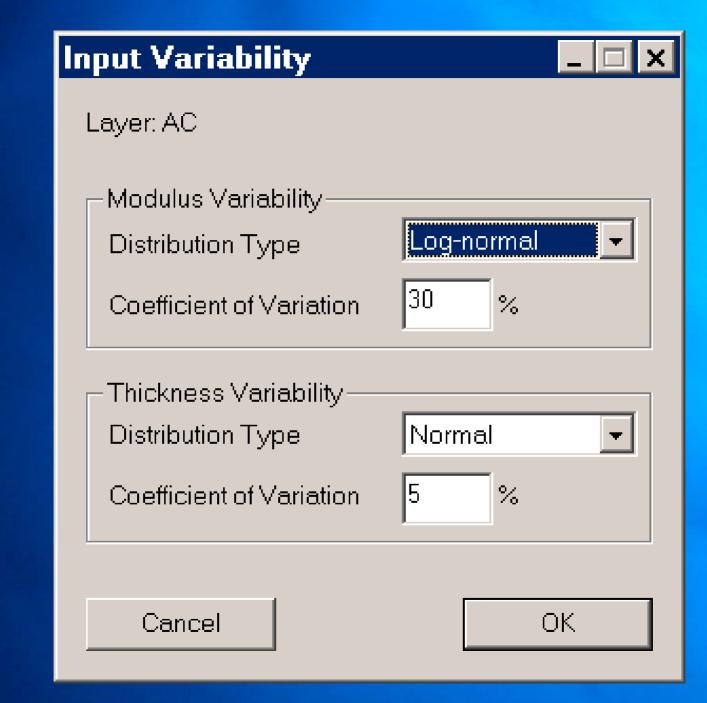
F1 from any program window

Help Topics: PERROAD 2.4	? ×
Contents Index Find	
Contents Index Find Click a topic, and then click Display. Or click another tab, such as Index. Image: Click a topic, and then click Display. Or click another tab, such as Index. Image: Click a topic, and then click Display. Or click another tab, such as Index. Image: Click a topic, and then click Display. Or click another tab, such as Index. Image: Click a topic, and then click Display. Or click another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Click a topic, another tab, such as Index. Image: Cl	
C <u>l</u> ose <u>P</u> rint Ca	ancel

Structural and Seasonal Information (F1 for Help)


_ 🗆 🗙

AC - Temperature Relationship (F1 for Help)


$$E_{AC} = Q_1 * e^{\left(\frac{(T+Q_2)^2}{Q_3}\right)}$$

Cancel

Note: Changing these coefficients will update ALL of the asphalt concrete seasonal moduli, according to temperature.

	OK	
·		

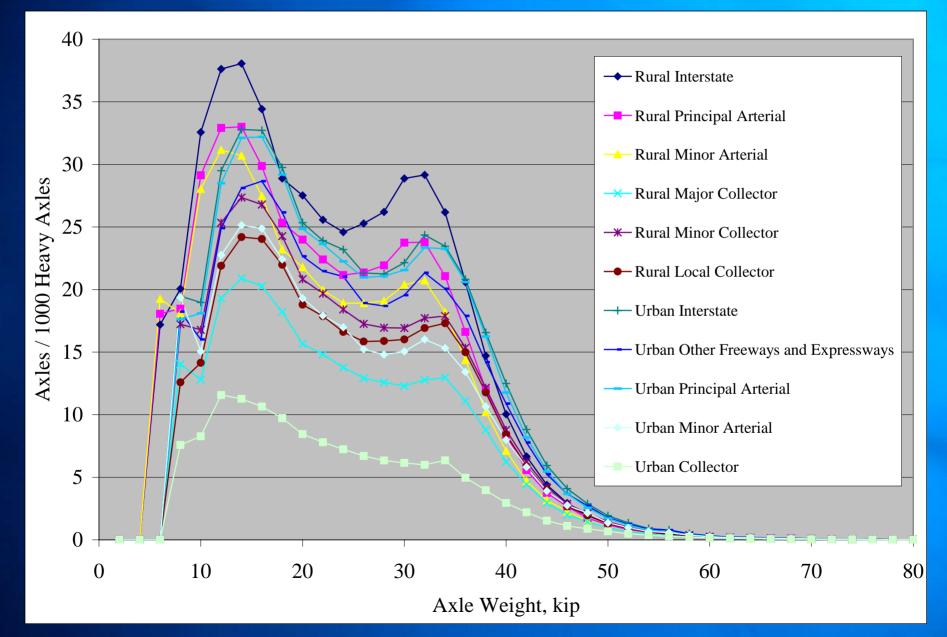
_ayer Performance Criteria (Press F1 for Help)								
Layer: 1								
Position	Criteria	Threshold	Transfer Function	k1	k2			
🔽 Тор	Vertical Deflection	20	milli-inch					
🗖 Middle								
🔽 Bottom	Horizontal Strain 🗨	-70	microstrain 🔽	3e-6	3.148			
Note: The follow	wing sign convetion is used		Note: The transfer function	s are for strain	only.			
Negative = Ten	sion							
Positive = Comp	pression							
Deflection is Po	ositive Downward							
Cancel					ОК			

×

Loading	Conditions (F1 for He	lp)				_ 🗆 🗙
-Loading	Configurations (Check All That	Apply)				
00-00	I Single	<mark>100-100</mark>	🔽 Tandem	<mark>00=00</mark>	▼ Tridem	00	☐ Steer
Choose	Current Configura	-	Current Axles Per Day in Design Lane:	000	Axle Growth Rate:	4	%
Axle Weight kip	Axles / 1000 Heavy Axles	Axle Weight kip	Axles / 1000 Heavy Axles	Axle Weight kip	Axles / 1000 Heavy Axles	Axle Weight kip	Axles / 1000 Heavy Axles
0-2	0	28-30	0.357	56-58	0	84-86	0
2-4	40.626	30-32	0.269	58-60	0	86-88	0
4-6	54.164	32-34	0.123	60-62	0	88-90	0
6-8	73.084	34-36	0.075	62-64	0	90-92	0
8-10	123.87	36-38	0.043	64-66	0	92-94	0
10-12	106.33	38-40	0.039	66-68	0	94-96	0
12-14	47.816	40-42	0	68-70	0	96-98	0
14-16	24.161	42-44	0	70-72	0	98-100	0
16-18	15.277	44-46	0	72-74	0	100-102	0
18-20	9.142	46-48	0	74-76	0	102-104	0
20-22	4.946	48-50	0	76-78	0	104-106	0
22-24	2.48	50-52	0	78-80	0	106-108	0
24-26	1.235	52-54	0	80-82	0	108-110	0
26-28	0.719	54-56	0	82-84	0	110+	0
Canc	el	[Import L	_oad Spectra	Save Los	ad Spectra		ОК

Open

Look <u>i</u>n:


🔁 PerRoad 2.1

- 🗕 🖻 🖛

Rural Interstate
Rural Local Collector
Rural Major Collector
Rural Minor Arterial
Rural Minor Collector
Rural Principal Arterial
Urban Collector
Urban Interstate
Urban Minor Arterial
Urban Other Freeways and Expressways
Urban Principal Arterial

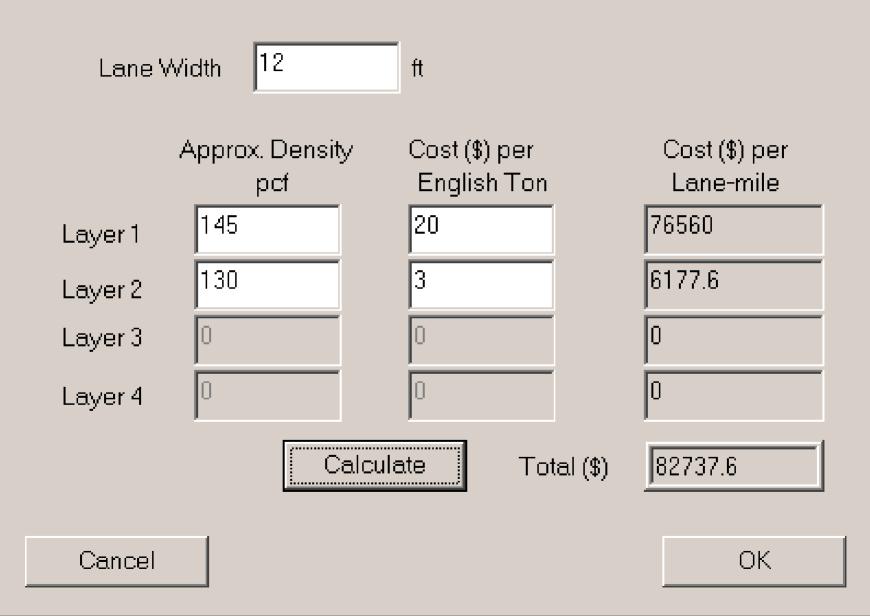
File <u>n</u> ame:	*.lsf	<u>O</u> pen	
Files of <u>ty</u> pe:	Load Spectra Files (*.lsf)	Cancel	

Tandem Axles

utput & Desig	n Studio (F1	for Help)			_ 🗆
,	lysis - Using Nomi cute Deterministic	nal Values — F	Reliability Analysis Exe	cute Probabilisti	
	ent Design Result	S			
— Thickness Desigr Number of Paverr	-]			
Material Thickness, in.	Layer 1 AC 10	Layer 2 Gran Base 6	Layer 3 Soil 999	Layer 4 Soil 999	Layer 5 Soil Infinite
Disclaimer			Cost Analysis	Export Data	Leave Studio

Deterministic Output

Perpetual Pavement Design Results -


Layer	Location	Criteria	Threshold	Worst Case	Units	Perpetual?
1	Тор	Vertical Defl	20.	18.102	milli-in	Yes
1	Bottom	Horizontal Str	-70.	-119.73	microstrain	No
3	Тор	Vertical Strain	200.	232.91	microstrain	No

Probabilistic Output

-Perpetual Pavement Design Results -

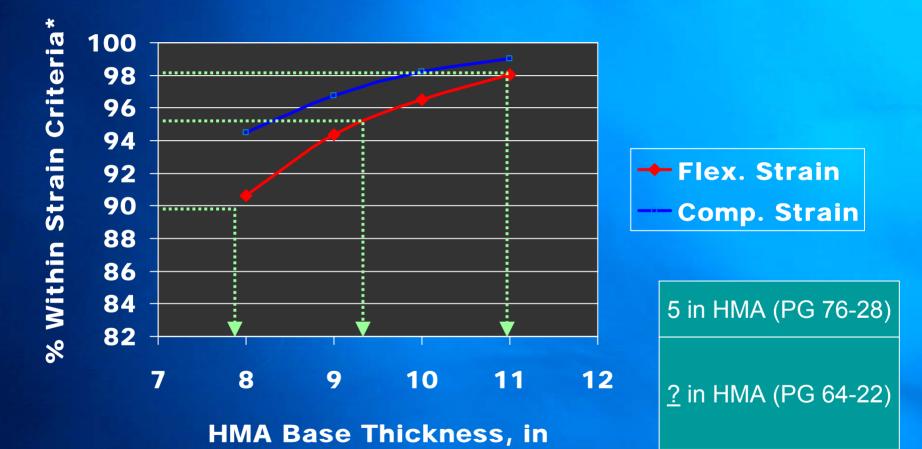
Location	Criteria	Threshold	Un	Probabi	Damage/MESAL	Life Estimate, yrs
Тор	Vertical Defl	20.	mil	100.	NA	NA
Bottom	Horizontal Str	-70.	mi	95.	7.5949e-003	42.11
Тор	Vertical Strain	200.	mi	99.	NA	NA
•	Top Bottom	Top Vertical Defl Bottom Horizontal Str	Top Vertical Defl 20. Bottom Horizontal Str70.	Top Vertical Defl 20. mil Bottom Horizontal Str70. mi	Top Vertical Defl 20. mil 100. Bottom Horizontal Str70. mi 95.	Top Vertical Defl 20. mil 100. NA Bottom Horizontal Str70. mi 95. 7.5949e-003

Cost Analysis

Example results: I-40 in Oklahoma

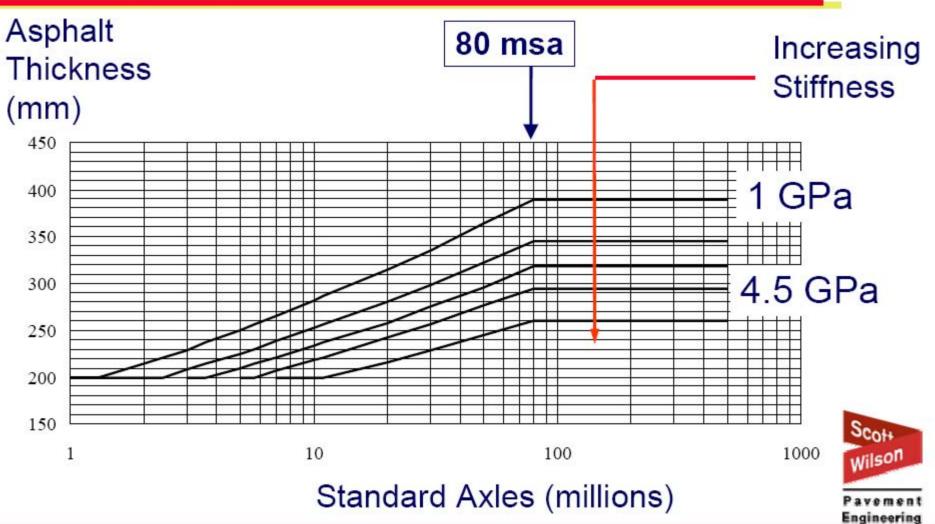
Obtained traffic classification, weight data

 Average 2,063 Flexible ESAL/day (2002)


 Adjusted to fit input categories in software
 Assumed materials characteristics, thicknesses for evaluation

Typical Section

	<u>Layer 1:</u>
<u>2" SMA</u> (PG 76-28)	$E_{sum} = 400 \text{ ksi}$
<u>3" S3</u> (PG 76-28)	E _{spr/fall} = 750 ksi
<u>6"</u> (var) <u>S2 or S3</u> (PG 64-22)	$E_{winter} = 1300 \text{ ks}$ $\frac{\text{Layer 2:}}{\text{E}_{sum}} = 400 \text{ ksi}$ $E_{spr/fall} = 500 \text{ ksi}$
<u>3" S3</u> (PG 64-22) N _{des} = 50, designed @ 2% air voids	$E_{\text{winter}} = 600 \text{ ksi}$


E_{SG} = 8 ksi

Results, Probabilistic Analysis

* Percentage of heavy load applications where the strain level is less than the defined criterion

Design Chart

So Years

What else could you do?

- > Assume different materials, different stiffness (PG 76 for HMA base course)
- Apply long life concept to rehabilitation design
 - Properly characterize materials to remain
 - Rubblize concrete pavement (if existing pavement is PCC)

Use as a tool to evaluate 1993 AASHTO Guide designs

New Pavement Design, US 167, Lincoln Parish

- Recently designed using 1993 AASHTO Guide
 - DARWin
- Northern Louisiana
 2,940,156 ESAL over 20 year design period
 - 2341 loaded axles/day
 - 1.7% growth rate

2" SP HMA (PG 76-22M)

2" SP HMA (PG 76-22M)

4" SP HMA (PG 64-22)

8" Cl. II Crushed Stone Base

Subgrade, E_{sc} = 10278 psi

US 167, Lincoln Parish

Parameter	Case 1	Case 1a	Case 1b
	8/8	8/ <mark>12</mark>	<mark>9</mark> /8
ε _f	-174.7	-169.2	-149.7
(prob)	(90%)	(90.7%)	(94.9%)
ε	468.8	423.14	402.3
(prob)	(89.9%)	(92.6%)	(94.3%)
Time, 10% damage	15.3 yrs	15.9 yrs	31.9 yrs

PerRoad Software

- PerRoad is a useful tool for evaluating flexible pavement designs
 PerRoad is a good way to transition into
 - the ME design procedure
- PerRoad training is available!
 - Simply contact your local asphalt industry association representative

<u> ไม่สุกใหร</u>

Gary L. Fitts, P.E. Asphalt Institute 210-590-9644 cifitts@asphaltinstitute.org