2005 Southeastern States Pavement Management and Design Conference

## Quantifying the Effects of PMA for Reducing Pavement Distress

Harold L. Von Quintus, P.E.



## Presentation Overview

- 1. Introduction
- 2. Performance Comparisons
- 3. Summary of Findings & Conclusions



Study Team

#### **ARA Project Team**

- Harold L. Von Quintus, P.E.
- Jagannath Mallela
- Jane Jiang



#### **Project Monitors**

- Mark Buncher
- Tim Glanzman



Study Sponsors

**Industry Associations** 

- The Asphalt Institute
- The Association of Modified Asphalt Producers

Federal Highway Administration

#### **Corporate Sponsors**

- Arr-Maz Products
- ATOFINA Petrochemicals, Inc.
- Dexco Polymers LP
- Dynasol LLC
- Goodyear Chemical
- KRATON Polymers
- Polimeri Europas Americas
- Ultrapave

Study Objectives

- Quantify the effect of using PMA as compared to conventionalunmodified HMA mixtures.
- 2. Identify conditions that maximize effect of PMA to increase HMA pavement & overlay life for use in LCCA.



### Is There a Benefit Using PMA?



Reason for Using PMA?





#### Short-Term Versus Long-Term Benefit?



# Performance Comparisons Rutting Fatigue Cracking Thermal Cracking



#### Selected Pavement Locations for Performance Comparisons



## Types of Analyses: PMA Versus Companion Sections

Comparison of Actual Distresses **≻**Rutting ➤ Fatigue Cracking >Transverse Cracking M-E Analysis of Performance Distortion, Load Related >Fracture, Load Related



#### Calibration – Agency/Cell Specific

|                           | Foundation                | Climate |    |            |     |
|---------------------------|---------------------------|---------|----|------------|-----|
| Pavement<br>Cross Section |                           | Freeze  |    | Non-Freeze |     |
|                           |                           | Wet Dry |    | Wet        | Dry |
| Thin LIMA                 | Fine-Grained              | 2       | 2  | 4          | 3   |
|                           | Coarse-Grained            | 3       | 3  | 3          | 3   |
|                           | 2                         | 2       | 2  | 3          |     |
| Se                        | ct. used for              | 2       | 2  | 3          | 2   |
| Calibration               |                           | 0       | 1  | 2          | 2   |
| ruii-Deptii               | <b>Coarse-Grained</b>     | 0       | 1  | 2          | 2   |
|                           | НМА                       | 3       | 3  | 6          | 6   |
|                           | PCC                       | 4       | 3  | 4          | 4   |
| Total No. PMA             | al No. PMA Sections 16 17 |         | 26 | 25         |     |



12

# Rutting Analysis

## Unmodified Mixes Versus PMA Mixes



Distress Comparisons - Rutting







# For LCCA, what is the time difference between different rut depths?





## Distortion Damage Analysis



 Use equivalent HMA summer modulus

Vertical strain at specific depths

$$RD = \sum_{i=1}^{n} \begin{pmatrix} 5.37 x 10^{-7} (C_{r1}) (N)^{0.4289(C_{r2})} \\ (T)^{2.5896} (V_{beff})^{1.0057} (V_{a})^{0.5213} \\ (C_{3}) (\varepsilon_{r}) (t) \end{pmatrix}_{n}^{1.0057} (V_{a})^{0.5213} \end{pmatrix}_{n}^{1.0057} (V_{a})^{0.5213}$$

$$DI = \frac{n}{N_R}$$

Assumption – All rutting occurs in HMA layers



### Rutting - Predicted Versus Measured Values





#### Residual = Predicted - Measured RD





# Load Related Cracking Analysis

Unnochtik

PARA CA



#### Distress Comparisons – Fatigue Cracking (Combined Area & LCWP)







# For LCCA, what is the time difference between different amounts of cracking?





## Fracture Damage Analysis



- Use equivalent annual modulus
- Tensile strain at bottom of HMA layer

$$N_f = 0.00432 (C_{f1}) (10)^M$$

$$M = 4.84 \left( \frac{V_{beff}}{V_a + V_{beff}} - 0.69 \right)$$

#### Fracture Analysis Assumptions



#### PMA Mixtures: Cracking Versus Damage Index





#### Fatigue Cracking - Predicted Versus Measured Values





#### Residual = Predicted - Measured





#### Distress Comparisons -Transverse Cracking





#### TC Differences: Neat - Modified Values





# Summary of Findings & Conclusions



#### Summary - Enhanced Performance Based on Damage Analysis





#### Summary - Expected Increase in Service Life, years

| Site Factor                       | 0                 | Added Life                          |      |
|-----------------------------------|-------------------|-------------------------------------|------|
| Foundation                        | Non-E             | 5-10                                |      |
|                                   | Expan             | 2-5                                 |      |
|                                   | Frost \$          | 2-5                                 |      |
| Water                             | Deep              |                                     | 5-10 |
| Table &<br>Drainage               | Shallow; Adequate |                                     | 5-8  |
|                                   | Shallo            | 0-2                                 |      |
| Existing<br>Pavement<br>Condition | HMA               | Good                                | 5-10 |
|                                   |                   | <b>Poor-Extensive Cracking</b>      | 1-3  |
|                                   | PCC               | Good                                | 3-6  |
|                                   |                   | <b>Poor-Faulting &amp; Cracking</b> | 0-2  |

#### Summary - Expected Increase in Service Life, years

| Site Factor               | Condition Description |               | Added Life |
|---------------------------|-----------------------|---------------|------------|
| Climate;                  | Hot                   | Hot Extremes  | 5-10       |
| Temp.<br>Fluctuations     | Mild                  |               | 2-5        |
|                           | Cold                  | Cold Extremes | 3-6        |
| Traffic, Truck<br>Volumes | Low                   | Intersections | 5-10       |
|                           |                       | Thoroughfares | 3-6        |
|                           |                       | Heavy Loads   | 5-10       |
|                           | Moderate              |               | 5-10       |
|                           | High                  |               | 5-10       |





# Use of PMA reduces distress in pavements & overlays

- Less Fatigue Cracking
- Fewer Transverse Cracks
- Smaller Ruts









# Field & laboratory investigations of PMA mixes suggest:

#### Enhanced Performance

- 25 to 100 % increase in service life
- 3 to 10 years increase in service life

#### Reduced Maintenance Activities

- Crew Safety
- Traffic Delay







#### Mechanistic-empirical analysis confirms need for <u>different calibration factors</u> for predicting performance of PMA mixtures.







- Use of PMA mixes do extend the service life over unmodified HMA mixes.
- Layer thickness should not be reduced when empirical design methods are used.

## Thus, for LCCA: Increase service life Do not reduce thickness



### Thank you for your attention -Any questions?

Contact Information: Mark Buncher, Asphalt Institute Tim Glanzman Tim.glanzman@earthlink.net Phone: (832) 693-0984