Concrete Pavement New M-E Design Guide

2005 Southeastern States Pavement Management And Design Conference

June 20, 2005

Michael I. Darter Senior Principal Engineer Applied Research Associates, Inc.

PCC Pavement Presentation

- Value of M-E "comprehensive design"
- Control of key distress
- Pavement types and rehab
- Inputs
- Design features
- Reliability
- Calibration

Mechanistic-Empirical Design

Current AASHTO vs. Current Needs

Biggest Advantage of M-E Design

 "Comprehensive" design procedure: Directly considers key types of structural distress and ride quality.

The Biggest Advantage of M-E Design

- Illustration:
 - Increase PCC strength and expect improved performance?
 - True for simplistic AASHTO Guide!
 - Not necessarily true in the field because Ec, shrinkage, and CTE all increase causing higher stresses!
 - Could be increased cracking and faulting!
- Comprehensive design procedure
 would tell you this, before you build

Flexible Pavement Layers

Conventional

Deep Strength

Full-Depth

Unbonded PCC Overlay Layers

PCC Overlay of Flexible Pavement

Traffic Loadings

- Vehicle volume, growth & classification
- Single, tandem, tridem, quad axle load distributions
- Monthly vehicle distribution
- Hourly load distribution
- Lateral lane distribution
- Tire pressure
- Tractor wheelbase

Axle Load Spectrum (Single Axles)

Axle load

1998 Truck Flow

2020 Forecast Truck Flow

PCC Material Tests

- Elastic Modulus, "E"
 - ASTM C 469
- Flexural Strength, MR, modulus of rupture
 - Third point loading test
 - ASTM C 78
- Concrete coefficient of thermal expansion
 - AASHTO TP60-00
 - Test performed at 10 to 50 deg C
- Concrete shrinkage
 - ASTM C 157

Concrete Thermal Expansion—AASHTO TP60

Concrete Coefficient of Thermal Expansion

Materials/Subgrade Characterization

- HMA Overlays & base course
 Dynamic modulus (temp., loading speed)
- Cement treated & lean concrete base
 Elastic modulus
- Unbound aggregate base & soils
 - Resilient modulus (moisture, freezing)

Better Characterization & Selection

- Bring daily, seasonal, and yearly changes in materials into design process
 - Better use of available materials

 – HMA & PCC material mix optimization to minimize distress.

Climate

- Hourly climatic data
 - Temperature
 - Precipitation
 - Wind speed
 - Cloud cover
 - Relative ambient humidity
- Water table level

Components of Curling Stress

Actual Temperature Gradient **Built-in Curling**

Moisture Gradient

$$\Delta T = \Delta T_{Hourly} + \Delta T_{Built - in} + \Delta T_{Shrinkage}$$

JPCP Design Features

Slab thickness Slab length (joint spacing) Slab width (widened slab) Tied PCC shoulder Joint load transfer (dowels & interlock) Base and subbase layers (bonding)

CRCP Design Features

- Slab thickness
- Reinforcement
 content
- Slab width (widened slab)
- Tied PCC
 shoulder
- Base and subbase layers (bonding)

Design Reliability

- Totally different than AASHTO 93
- Not multiplier of traffic loadings as in AASHTO 93
- Based on accuracy of predicting performance

Residuals from Performance Prediction during Calibration

- "Residuals" represent the knowledge that exists of the accuracy of the distress prediction model
- Standard error of estimate

Cracking Reliability Example

AASHTO 93 & Design Guide I-80 Chicago — Heavy Traffic

Design thickness, in

Dowel Diameter Effect on Reliability Level

National Calibration Models & Local Calibration

- All concrete pavement models successfully calibrated using national LTPP & other data
 - Joint faulting
 - Slab cracking
 - IRI
 - Transverse cracks/Punchouts-CRCP

Calibration database JPCP Cracking

196 LTPP sections36 RPPR sections522 total observations

Utah JPCP Case Study

- 10-in JPCP, non-doweled
- PCC w/high thermal coef. expansion
- Lean concrete base
- Tied PCC shoulders
- Random joint spacing of 12, 13, 17, and 18-ft.

Utah JPCP Case Study

Inputs obtained and following predicted:

- Joint faulting, in
- Slab cracking, percent slabs
- IRI, in/mile

Utah JPCP Case Study —Joint Faulting—

Utah JPCP Case Study —Fatigue Cracking—

Utah JPCP Case Study —IRI (Ride Quality)—

What If . . . Modified JPCP Design?

- Add 1.25-in diameter dowel bars at transverse joints.
- Use of an aggregate in the PCC with a lower coefficient of thermal expansion.
- Use of 15-ft uniform joint spacing.

Utah JPCP Comparison

Distress	Existing Design (4.2 million trks, 17 years)	New Design (65 million trks, 35 years)
Slab cracking	26 %	0.7 %
Joint faulting	0.18-in	0.10-in
IRI	171-in/mile	139-in/mile

M-E Design Guide Benefits

- Superior engineering tools
- Economic savings
 - Improved traveling conditions for public
 - Innovative contracting tools
- Improved management of highway network

