NCAT PAVEMENT TEST TRACK

TRACK RESEARCH HISTORY

(Change Necessitates Full Scale Accelerated Performance Testing)

Bates Experimental Road (1922-1923) Effect of Solid Rubber Tires

> WASHO Road Test (1952-1954) Effect of Post War Truck Loads

AASHO Road Test (1956-1961) Effect of Varying Loads and Buildups Mn/ROAD (1994-present) Effect of Load Limits on Spring Thaw (& Mechanistic Response)

> NCAT Track (2000-present) Effect of Truck Traffic on Both Mix & Structural Performance

Westrack (1996-1998) Effect of Superpave Design (& Performance Specifications)

- Established by 1986 NAPA-AU Joint Agreement
- Financial Endowment "Seed" from Contractors, Suppliers, & Equipment Manufacturers via NAPA-REF
- Facilities and Faculty from Auburn University
- "Improve the Performance of HMA Pavements via <u>Practical</u> Research, Education, and Information Services"
- Broke Ground at Test Track in September of 1998...

NCAT TRACK

- Materials and Methods (Not Thickness) were 2000 Study Variables
- Materials, Methods and Thickness Studied in 2003 Experiment
- Anticipate Larger Structural Experiment in 2006 Track

2003 MIXED EXPERIMENT

Black – Extend Original Rutting Study to 20M ESALs (23)

TRUCKING OPERATIONS

WHEELPATH DEVELOPMENT

INTERSTATE SIMULATION

Coarse Superpave Mix

•Stone Matrix Asphalt Mix

Open Graded Friction Course

SMA_{near} vs OGFC_{far} (SAME AGG)

OGFC @ 1/4" PER HOUR

RUTTING VIA PROFILES

RUTTING VIA PROFILES

CHANGING TEXTURE

est Track

TRANSVERSE JOINTS

SURFACE FRICTION

LONGITUDINAL JOINTS

TOP-DOWN CRACKS IN OLD MIXES

S2 CRACK MAP

BOTTOM-UP CRACKS IN NEW MIXES

STRUCTURAL STUDY

N1	N2	N3	N4	N5	N6	N7	N8
1			1	1	3	5	5
2	4	4	2	2	4	4	4
2	4	4	2	2	4	4	4
		4	2	2	4	4	6
6" Dense Crushe	d Aggregate Base	4	2	6" Dense Crushed Aggregate Base			
		6" Dense Crushed	d Aggregate Base [
200 ft	200 ft	200 ft	200 ft	200 ft	200 ft	200 ft	200 ft
Mix run with modified binder at optimum Mix run with unmodified binder at optimum Mix run with unmodified binder at opt + 0.5%					Mixes 1 & 3: Mixes 2, 4 & 6: Mix 5:	3/8" ARZ Superpave in 1" Lifts 3/4" ARZ Superpave in 2" Lifts 3/8" SMA in 1" Lifts	

STRUCTURAL STUDY OBJECTIVES

- Determine Actual Layer Coefficients for '93 AASHTO Design Describing New Mixes, Materials and Methods
- Provide an Initial Validation of the Upcoming Mechanistic Design Guide (Mechanistic and Performance Models)
- Prepare for Comprehensive Validation Experiment on the 2006 Track (3RD Cycle of Testing)

STRUCTURAL SECTION RUTTING

STRUCTURAL SECTION RUTTING

STRUCTURAL SECTION RUTTING

RESPONSE INSTRUMENTATION

FIELD PERFORMANCE TESTING

STRAIN SIGNAL PROCESSING

W6: xy(col(W4,1),col(W4,2));overplot(xy(col(W5,1),col(W5,2)));setsymbol(1,1);setplotstyle(1,1)

W4: inflect(W3,60,350,4.5)

1:

2: 3:

4

5

6:

7:

8:

9:

10

11: 12:

MEASURED PAVEMENT RESPONSE

Measured Strain vs. Mid-Depth Temperature

Measured vs. Theoretical Strain (excluding coordinates (0,0))

6" GB
25" GB
Linear (25" GB)
Linear (6" GB)

Measured Strain, microstrain

FATIGUE CRACK DEVELOPMENT

N1 & N2 – 10/11/04 (4.1M)

HISTORY OF N2

N2 CRACK MAP - 10/21/03 (0.0M)

N2 CRACK MAP - 6/21/04 (2.6M)

N2 CRACK MAP - 6/28/04 (2.7M)

N2 CRACK MAP - 8/2/04 (3.2M)

N2 FATIGUE CRACKING

TERMINAL N2 CRACK MAP

PRELIMINARY FINDINGS

- No Difference in Stiffness Between Modified and Unmodified Mixes, But More Elastic Recovery in Modifieds
- Strong Relationship Between Temperature, Thickness and Strain Accommodates Blending Temperature and Traffic Record into Cumulative, Comprehensive Damage Model
- Higher Longitudinal Strains Induce Transverse Cracking
- Thin Sections Failed, Lasted Longer than Predicted

2006 TRACK RESEARCH OPTIONS

- <u>Structural</u> Deep Remove/Replace Sections in a Comprehensive Validation Experiment for Mechanistic-Empirical Thickness Design (\$150k per Section per Year for 3 Years)
- <u>Mill and Inlay</u> New Mix Performance Sections (\$100k per Section per Year for 3 Years)
- <u>Continue Traffic</u> on Existing Sections and Apply Another Design Lifetime of Trucking (\$50k per Section per Year for 3 Years)

STRUCTURAL MILLING

APT COOPERATIVE EFFORTS

- Purdue Rutting Study on 2000 Track
- Florida Rutting Study on 2003 Track
- Purdue Structural Study on 2003 Track
- New TRB Alliance Subcommittee
- Structural Sections on 2006 Track

