### Long Life PCC Pavements

2005 Southeastern Pavement Management & Design Conference June 21, 2005





American Concrete Pavement Association

# **The Basic Questions**

- How do you define long life pavements?
  - Facility type often dictates need for long life pavements
  - Pavement longevity may range from less than 2 years to greater than 60 years
- Can we afford long life pavements?
  - It depends on the ultimate goal for the highway network
  - What is the long-term cost/benefit
- Do we have the technology to build truly long life pavements?





# **Benefits of Long Life Pavements**

- Drastic reduction in "down time" for maintenance and rehabilitation (construction times are not necessarily longer)
- Greatly improved safety (work zone and other)
- Reduced user costs (a predominant feature, if fully considered)
- Improved cost effectiveness



# **Pavement Selection**

- Life Cycle Cost Analysis (LCCA) is typically used to determine whether PCC or AC is the "better choice" for a specific roadway
- LCCA can also be effectively used to determine appropriate design features
- Realistic LCCA requires substantial historical data or generic models to evaluate performance and rehabilitation or maintenance requirements



# **Deterministic LCCA**

- Deterministic LCCA is the more traditional method of LCCA
- This method assumes that the timing of maintenance and rehabilitation is well known and can be targeted for a specific project
- It also assumes that the costs to perform these activities are known with a high level of certainty
- Is this applicable to long life pavements?



# **Probabilistic LCCA**

- Probabilistic LCCA is an "improved" version of the deterministic method
- The timing and costs associated with performing maintenance and rehabilitation activities are considered statistically
- In other words, instead of assuming the future is known with certainty, the most probable scenario is analyzed



# **Presentation Focus**

- This presentation is focused on developing longlife design alternatives and the selection of PCC design features
- The information presented is meant to provide insight into the process
- The relative values shown should not be used in actual practice, they are for illustration only



### What are We Building?





### Is it Cost Effective?





# **Design Optimization**





# **Potential Savings**







#### **Concrete Pavement Design Requires Selection of Appropriate Features**

- ✓ Subgrade modification
- □ Drainage System
- ☑ Subbase
- ☑ Joint Spacing
  - □ 20 ft (6.1 m)
  - ☑ 15 ft (4.3 m)
- Dowels
- Thickness
  - □ 8 in (200 mm)
  - □ 10 in (250 mm)
  - ☑ 12 in (300 mm)

- □ Reinforcement
- ☑ Joint Sealant
  - □ None
  - □ Hot pour
  - ☑ Silicone
  - Preformed
- Surface Texture
  - □ Transverse tine
  - ☑ Burlap drag
- Shoulder
  - ☑ Asphalt
  - □ Concrete



# Law of Diminishing Returns



#### **Construction Cost**



### **Cost - Performance Balance**

#### Initial construction cost

#### Budget constraints

#### Life-cycle cost



# For Each Added Design Feature





# **Contractor Survey**

A survey was conducted to determine and document, in <u>relative terms</u>, the effects of various PCC pavement design features on initial pavement cost





### **Contractors Surveyed**





# **Reference Section**



- Transverse joints: 20 ft (6.1 m) uniform with no skew and no dowels
- Single-width saw cut to 3/8 in. (75 mm) with hot-poured filler
- Lanes: 12 ft (3.6 m); tied with #4 deformed bars 30 in. (75 mm) centers
- Subgrade prepared by scarifying to depth of 6 in. (150 mm) and recompacting at optimum moisture content.

#### Relative Cost = 100



# **Survey Instructions**

- Base on common circumstances and conditions
- Project 5 miles (8 km) long and within 50 miles (80 km) of home office
- Assume typical materials and construction procedures by state DOT
- Existing grade and alignment is adequate no earthwork



### **Features**

- Slab Thickness
- Subbase Type
- Shoulders
- Reinforcement
- Joint Spacing
- Transverse Joint Load Transfer
- Transverse Joint Sealant



### **Slab Thickness**



Reference Section: 10 in (250 mm) thick 20 ft (6.1 m) joint spacing Cost = 100



# Subbase Type



Reference Section: 6 in (150 mm) thick densegraded subbase Cost = 100



### **Shoulders**



Reference Section: Gravel shoulders on 6 in (150 mm) granular subbase Cost = 100



# **Transverse Joint Design**



1 1/2 in (38-mm)
 Dowels 20 ft (6.1 m) Jt. Spacing

- 1 1/2 in (38-mm)
  Dowels 15 ft (4.6
  m) Jt. Spacing
- CRC #6 bars @ 8 in (200 mm) spacing

Reference Section: 10 in (250 mm) thick undoweled 20 ft (6.1 m) joint spacing Cost = 100



### **Transverse Joint Sealant**



Reference Section: Single 3/8 in (75-mm) cut filled with hot-pour sealant 20 ft (6.1 m) joint spacing Cost = 100



# Methods to Determine Cost-Effectiveness

- Experience
- Life-cycle cost analysis
  - Initial cost
  - Future cost
  - Performance
- Benefit/Cost analysis
  - Initial cost
  - Performance

#### User Costs?



# Long Life Concrete Pavement Requirements

- Adequate design thickness and realistic options
  ME-PDG will facilitate improved designs
  - Materials, support conditions, load transfer, etc. are considered to a greater extent
- Good construction practices
- Realistic expectations considering cost versus performance



# **Current Long Life Design Features**

- Thicknesses up to 14 inches
- Optimized concrete mix design
- Rigid specifications on placement, curing, sawing, etc.
- Widened lanes (or tied concrete shoulders)
- Drainage, stainless dowels, others???



# **Historical Trends in Longevity**

- Concrete pavements have significantly exceeded their design lives in most cases
- The existing AASHTO design procedure (1972, 1986 and 1993) is very conservative for concrete
- Many factors not incorporated in the existing design have a significant impact (i.e. strength gain over time, innovative materials and so on



# Survival Analysis Results - I-40 in OK



# Survival Analysis Results

Avg. Mean life





# **Typical Section in 2001**



4 in (100 mm) Stabilized opengraded subbase on dense-graded subbase (with outlet pipes) Widened transverse joints with silicone sealant

Increase in construction cost over 1970's era design = 46% How much longer will it last?



# Summary

- Life-cycle cost analysis is a useful tool to compare design features/sections
- User delay costs appear essential to justify certain design options
- Long life is achievable at reasonable cost
- Attention to detail in design and construction is critical



# **Questions?**

