Pavement Type Selection

At The Georgia D.O.T. Presented By Jason McCook Assistant Road and Airport Design Engineer

Pavement Type Selection Process

- Pavement Type Selection (PTS) is a process that:
 - » Combines engineering and economic analyses.
 - » Assists engineers in choosing a cost-effective pavement type.
 - » Is not an exact science.
 - » The 1993 AASHTO Guide allows for other factors to be considered along with engineering and economic factors.

Pavement Type Selection Process

- This is a new process for the GDOT.
- The pavement being selected, regardless of type shall:
 - » Carry the anticipated lifetime loading.
 - » Perform under site specific geotechnical (soil support) and
 - » Environmental (precipitation and drainage) conditions.

Pavement Design

- **Pavement Design** selects a combination of materials of known strengths and thickness to withstand and support the anticipated lifetime loading repetitions.
- The design is expected to perform under the site specific conditions.
- *The lifetime loading repetitions and materials are site specific dictated by the anticipated traffic.*
- The lifetime Design Period and Serviceability Loss are essential components of the Pavement Design Procedure.

Pavement Design

- Design Period is the period of time that elapses from the time the pavement deteriorates from its initial serviceability level to its terminal serviceability level.
- Serviceability Loss is the gradual loss in pavement quality over its design life.

Life Cycle Cost Analysis

• Life Cycle Cost Analysis (LCCA) compares alternate Pavement Types, designed for a given project over an Analysis Period.

- LCCA also compares associated future maintenance, rehabilitation, and User Costs over the Analysis Period.
- Analysis Period is the length of time for which an LCCA is conducted for economic analysis and comparison of the various alternates.

Life Cycle Cost Analysis

• A LCCA analysis considers at least two viable pavement alternatives for consideration.

• Following the completion of the LCCA analysis, alternatives are ranked using a multicriteria analysis matrix.

Multi Criteria Analysis Matrix

- » This matrix has weights assigned as a percentage to criteria / factors in the LCCA analysis, e.g. Construction Costs, Maintenance Costs, User Delay Costs, etc...
- » Major Factors
 - -LCCA criteria that have readily quantifiable costs (unit costs, more certainty in their values,).
- » Minor Factors
 - -LCCA criteria that have costs that are less readily quantifiable (less certainty in their values).

Multi Criteria Analysis Matrix

Criteria with readily quantifiable unit costs

- Material Costs: from historical bid prices
- Traffic Control Costs: from historical bid prices
- Construction Costs

Multi Criteria Analysis Matrix

Criteria with less readily quantifiable unit costs

- User Delay Costs
- Familiarity with construction of proposed pavement type
- Performance of proposed pavement type on other projects
- Conservation / Recycling of Materials
- Stimulation of Competition between construction industries

GDOT Defaults for Design and LCCA

- GDOT uses a design period of 20 years for both rigid and flexible pavements.
- GDOT uses an initial serviceability level of 4.5 and a terminal serviceability level of 2.5 (AASHTO 1972).
- GDOT typically uses an analysis period of 40 years for LCCA.

Existing Pavement Evaluations

- Are needed when the existing pavement or portions thereof will be utilized in the proposed construction. They consist of the following:
 - » Visual Distress Survey: according to PACES distress guidelines and definitions.
 - » Falling weight deflection (FWD) testing of the existing paverfient may also be requested.

Existing Pavement Evaluations

- Coring to determine all existing pavement layer thicknesses.
- Cores also reveal the material condition of the existing layers, and
- If the Pavement Evaluation Engineer deems necessary, additional laboratory testing of cores will be performed.

Existing Pavement Evaluations

- The GDOT procedures and guidelines for performing Existing Pavement Evaluations are being developed.
- The guidelines will describe rigid and flexible pavement distresses with visual aids and how those distresses factor into rehabilitation strategy recommendations.
- The guidelines will be a unit in the upcoming Pavement Design Manual (PDM) which is due in December 2005.

Major Steps in Pavement Type Selection

Step I: Field Engineering and Design

- Complete a Pavement Evaluation if any existing pavement is being retained.
- Develop several pavement design alternates for comparison.
- Plan appropriate maintenance treatments at regular intervals for the various design alternates.

Major Steps in Pavement Type Selection

- » Step II: Economic Analysis
- Perform a LCCA comparing the different pavement designs proposed, including their maintenance.
- Incorporate user delay costs for all construction periods.
- Weigh-in the results of the LCCA comparing different pavement designs using a multi-criteria analysis matrix.

Major Steps in Pavement Type Selection

- » Step III: Engineering Judgement
- Incorporates the designers' experience and common sense.
- *Recommend* the most suitable *design* alternate.

A Good Pavement Type Selection Process

• Establishes a method for selecting the preferred pavement alternate for the given project or corridor.

• It is part of a comprehensive Pavement Management approach. A Good Pavement Type Selection Process

• This method takes into account the total construction and user delay costs over the life of the pavement (LCCA).

 Incorporates the designers' experience and recommends the most suitable design alternate.

Pavement Type Selection Process

• Pavement Type Selection is also

- » A Project Specific Process.
- » Applicable to Major Projects.
- » Its recommendation(s) must be justifiable to GDOT management making the entire process a transparent one.

Project Types

- Projects for which no P T S is needed are:
 - » Routine Maintenance Projects
 - Mill and Inlay: Top down cracking
 - Mill and Overlay: Top down cracking + structural addition
 - Overlay: seal minor cracks + provide additional layer
 - » Safety Improvement Projects
 - Intersection Improvements
 - » Bridge Replacement Projects

Project Types

- Projects for which a P T S is needed are:
 - » Interstate Widenings and Rehabilitation
 - » Major Arterial Projects in Urban Areas
 - » Major Maintenance Reconstruction Projects
 - » New Corridor Widening / New Construction

• Example 1:

New Construction - Extension of Toccoa Bypass

- » Base Type: Graded Aggregate
- » Initial one-way AADT: 7,390
- » Final one-way AADT: 12,240
- » Average one-way AADT: 9,815
- » 24 Hr Truck %: 10

• Alternate 1 *

- » Asphalt Concrete
- » Lifetime ESAL's: 6,900,00
- » Required SN: 6.18
- » AC Thickness: 9.5 inches
 - (11.5 inches for 3.0% underdesign)
- » Base: 12 inches
- » Total Thickness:
 - 21.5 inches
 - 23.5 inches (for 3.0 % underdesign)

• Alternate 2

- » PCC With Dowels
- » Lifetime ESAL's: 11,900,000
- » Slab Thickness: 10.0 inches
- » AC Interlayer: 3.0 inches
- » Base: 12 inches
- » Total Thickness: – 25.5 inches (for 2.2% underdesign)

• Example 2:

New Construction - Relocation of SR17 / Avalon Bypass

- » Base Type: Graded Aggregate
- » Initial one-way AADT: 11,750
- » Final one-way AADT: 19,250
- » Average one-way AADT: 15,500
- » 24 Hr Truck %: 12

• Alternate 1

- » Asphalt Concrete
- » Lifetime ESAL's: 13,000,00
- » Required SN: 6.71
- » AC Thickness: 11.5 inches (for 10.6% underdesign)
- » Base: 12 inches
- » Total Thickness:
 - 23.5 inches
 (for 10.6 % underdesign)

• Alternate 2 *

- » PCC With Dowels
- » Lifetime ESAL's: 11,900,000
- » Slab Thickness: 10.0 inches
- » AC Interlayer: 3.0 inches (for 15.0% underdesign)
- » Base: 12 inches
- » Total Thickness: – 25.5 inches (for 15.0% underdesign)