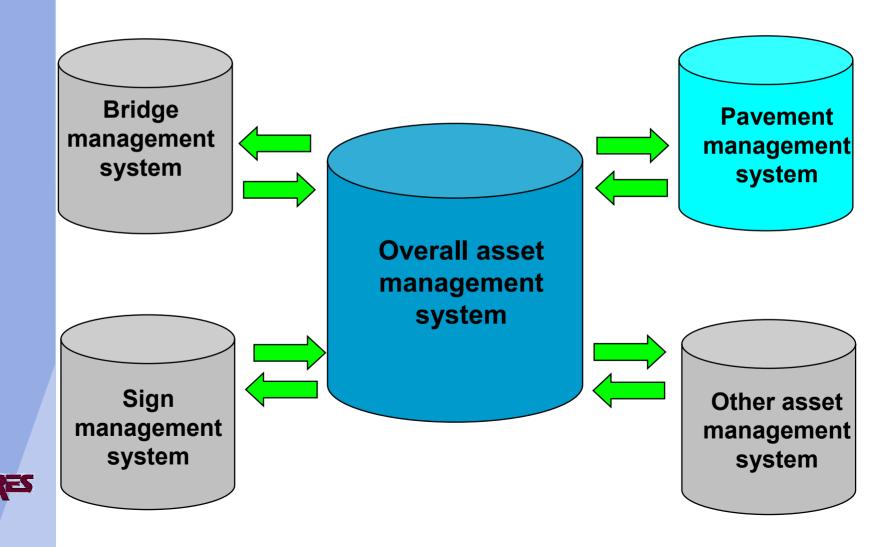
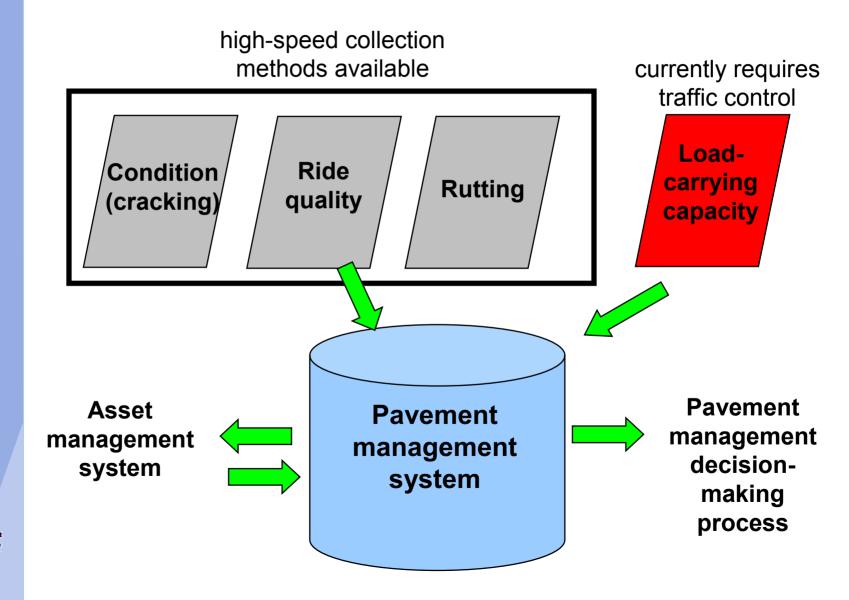
Development of a High-Speed Rolling Wheel Deflectometer

Southeastern States Pavement Conference Louisville, Kentucky June 2003



Outline


- Role of the RWD
- SBIR Research Objective
- Research Accomplishments
- Summary of RWD
 - Deflection Measurement Concept
 - Field Trial Results
- Texas Demonstration and Evaluation
- Deployment of Technology
- Benefits of RWD

Role of the RWD (1 of 2)

Role of the RWD (2 of 2)

SBIR Research Objective

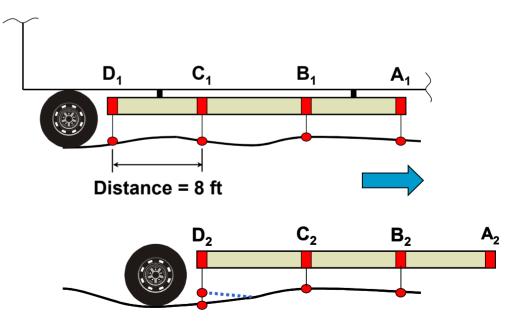
SBIR Contract DTRS-57-95-C-00102 to Applied Research Associates, Inc. in 1996 to:

"Develop a rolling wheel deflectometer (RWD) that meets the pavement structural assessment needs of pavement managers"

- Actual moving truck load
- Highway speeds up to 55 mph
- Continuous deflection measurements
- Network-level PMS applications

SBIR Accomplishments

- Time frame 1996 2002
- Phase I
 - Assessment of technology
 - Developed specifications for RWD
 - > Options for Structural Index
- Phase II (Part 1)
 - Designed and fabricated RWD trailer
 - Installed scanning laser
 - Developed software for data collection and processing
 - Initial proof of concept tests (not successful)


SBIR Accomplishments (con't.)

- Phase II (Part 2) Amendments to SBIR contract
 - 4-spot lasers (16 kHz Selcom SLS-5000) mounted on rigid beam
 - Spatially coincident approach (not entirely successful in the past)
 - Improved data acquisition and processing
 - Sampling rate sample every 0.48 inch at 55 mph
- <u>Proof of concept was successful</u> in July 2002
- Current system collects a single point average deflection on flexible pavements along tangent roadway segments

RWD Deflection Measurement

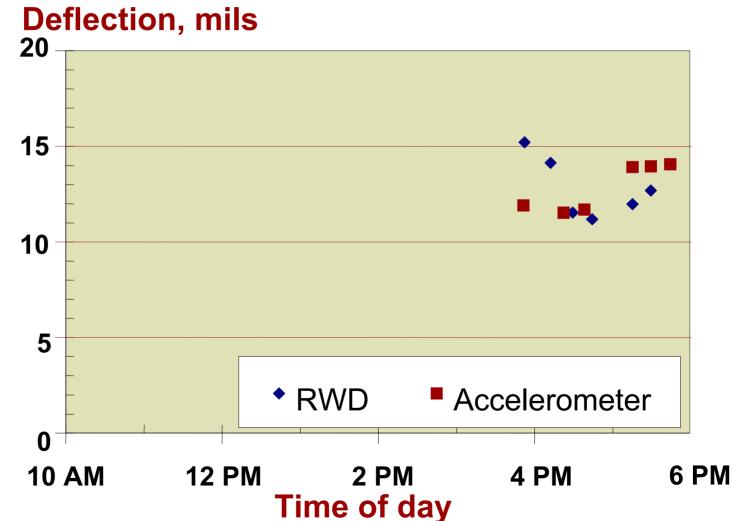
- 4 lasers mounted at 8-ft intervals
- > Lasers A, B, and C measure undeflected surface
- Laser D measures deflected surface near load wheel
- Compare readings after each 8-ft of travel

Deflection is difference between deflected and undeflected surfaces (i.e., $D_2 - C_1$)

Photos of RWD Components

Proof of Concept Field Trials

- Field Testing Site
 - Field trials conducted in July 2002 on Staley Road near Champaign, Illinois
 - > Thick and thin AC pavement sections tested
- Testing Details
 - > Multiple runs at speeds from 30 to 55 mph
 - RWD deflection measurements were average over 500-ft runs
 - > Reference accelerometer installed in pavement
 - FWD deflections for comparisons


Comparison to Reference Sensor

Comparison to Reference Sensor

Summary of Deflection Results

Proof of Concept Results

Mean Deflection, mils

	RWD	Accel	FWD*
Thick AC	11.1	10.3	8.7
Thin AC	12.8	13.3	14.0

*Tested on different date

Demonstration and Evaluation

- Field Evaluation of RWD Capability
 - ➤ July 14 25, 2003
 - Near College Station, Texas
 - Funded by FHWA and Texas DOT
- Issues Included in Field Tests
 - Section Length for Data Processing (<500 ft?)</p>
 - Pavement Factors To Be Considered
 - ✓ Surface Texture
 - ✓ Curves and Grades
 - ✓ Pavement Strength (deflection ranges from 5 to 35 mils)
 - ✓ Rutted Surface
 - Effect of Data Collection Speed
 - Comparisons to FWD, Texas RDD, and MDD
 - Repeatability

RWD Deployment (2003-2004)

- Improvements Needed for Deployment
 - Sensors
 - ✓ Improved laser calibration
 - ✓ Additional sensors
 - Controls, data acquisition, and data processing
 - \checkmark Move data acquisition to truck cab
 - ✓ Add automated data collection and processing
 - ✓ Add automated adjustment for temperature
 - ✓ On-board GPS
 - Other hardware and software changes
- Deployment Demonstrations
 - Five states to be selected by FHWA
 - Format determined by FHWA and participating states

Future Development (2005-2010)

- Long-term plan for further improvements to prototype and completion of full production unit
- Enhancements include:
 - Addition of Doppler lasers with current spot lasers to provide capability for:
 - Testing rigid pavements including load transfer efficiency of joints between slabs
 - Measuring complete deflection basin to provide structural analysis of pavements (FWD replacement)
 - Fully automated data acquisition and processing
 - Addition of GPR, GPS, and other support technologies
- Project level and network level applications

Ultimate Benefits of RWD

- Nondestructive method for measuring the structural capabilities of a pavement network
 - Minimal disruption to highway traffic flow
 - Safe operations
 - Full deflection basin
- Real time assessment of remaining structural life of the nation's highway system
- Information for managing pavements:
 - Improved decision-making processes for preserving pavements (better asset management)
 - More accurate estimates of our Nation's highway funding needs

