Promoting the Use of Pavement Management Through Cost Analyses

Katie Zimmerman, P.E. Applied Pavement Technology, Inc. KZimmerman@pavementsolutions.com

Factors Influencing the Use of Pavement Management - Past

- Technology Changes
- Policies/Guidelines/Legislation
 - AASHTO Guidelines
 - FHWA Policy
 - ISTEA

Factors Influencing the Use of Pavement Management - Present

- Retirement of Trained Personnel
- Lack of "Push"
- Focus on Asset Management

It's time to get back into the business of promoting Pavement Management

... as a way of doing business that makes "cents"...

...and cost analysis tools can help us accomplish this.

Cost Analysis Tools Used and Supported by Pavement Management

- Equivalent Annual Cost
- Benefit Cost Analysis
- Reduction in Life Cycle Costs
- Maintenance Cost Effectiveness Evaluation
- Cost Evaluations to Achieve Agency Goals
- Impact Analysis Results

Analysis Type 1: Equivalent Annual Cost

- Evaluate the cost associated with a given pavement strategy on an annual basis
- Needs
 - Total costs
 - Years of service

Equivalent Annual Cost Example

- Strategy 1: Overlay
 - Expected Cost: \$200,000
 - Expected Life: 10 years

Equivalent Annual Cost Example (cont.)

- Strategy 2: Overlay followed by Seal Coat in year 9
 - Expected Cost: \$200,000 + \$77,500
 - Expected Life: 15 years

Equivalent Annual Cost Example Summary

Strategy	EAC (\$/year)
Strategy 1: Overlay	\$20,000
Strategy 2: Overlay with Slurry Seal	\$18,500

Note: This analysis ignores the time value of money

Extrapolated over the entire network, an agency can realize large savings by reducing the annual cost of preservation

Analysis Type 2: Benefit Cost

- Similar to the type of analysis conducted in most pavement management systems
- The application of a treatment results in a "benefit"
- Each treatment also has a cost
- The treatment with the highest benefit cost ratio provides the best bang for the buck

Which Is Better For the Agency?

- Scenario 1: Let a pavement continue to deteriorate for several years before applying an overlay.
- Scenario 2: Apply a series of 3 preventive maintenance treatments beginning immediately.

Comparison of Alternatives

Benefit Cost Comparison

<u>Strategy</u>	Benefit (condition*age)	<u>Cost, \$M</u>
Rehabilitation Preventive Maint.	1000 250	\$3.5 \$0.5
Rehab Strategy:	$B/C = \frac{1000}{3.5}$	— = 286
PM Strategy:	$B/C = \frac{250}{0.5}$	= 500

Analysis Type 3: Reduction in Life Cycle Costs

- By reducing the life cycle cost associated with each road, we can reduce the costs associated with the preservation of the system
- Life cycle costing allows you to consider all costs in an analysis period on an equivalent basis
- Pavement management can help establish the treatment strategies and treatment timing

Define Cost Streams Strategy A

Define Cost Streams Strategy B

Compute Costs Strategy A

= \$ 400,000 PW (initial) = \$ 6,567 PW (routine maint.) PW (treatment 1) = \$ 58,455 PW (treatment 2) = \$ 42,713 PW (salvage value) = $\frac{\$ - 18,255}{18,255}$ **Total PW** = \$ 489,480

Discount Rate = 4%, Analysis Period = 20 yrs

Compute Costs Strategy B

 PW (initial)
 = \$ 400,000

 PW (routine maint.)
 = \$ 10,507

 PW (all 4 applications)=\$ 32,928

 PW (salvage value)
 = \$ 0

 Total PW
 = \$ 443,435

Discount Rate = 4%, Analysis Period = 20 yrs

Interpreting Analysis Results

Strategy No.	Strategy Description	PW	
1	Strategy A	\$489,480	
2	Strategy B	\$443,435	

Strategy B reduces the life cycle cost associated with the maintenance of the facility approximately \$2,302/per year. Across an entire network, the cumulative effect can be dramatic.

Analysis Type 4: Maintenance Cost Effectiveness Evaluations

Analysis Type 5: Cost Evaluations to Achieve Agency Goals

- Agencies are establishing performance standards
 - Michigan: 95% of the expressways and 85% of the trunk highways in good to fair condition within 10 years
 - Is this achievable without increasing funds? If not, how much more money is needed?

Achieving the Goal

Analysis Type 6: Impact Analysis Results

- Most common use of pavement management systems
- Allows an agency to compare various rehabilitation strategies to determine the most effective approach to pavement preservation

Example of Impact Analysis

- Small agency with a total of 80 miles of roads
- 20 miles are in each of the 4 condition categories (Excellent, Good, Fair, Poor)
- 20% of the network deteriorates to the next condition level each year
- It costs \$100 to repair a road in poor condition
- It costs \$25 to repair a road in fair condition

Worst First Scenario

	Now	Year 1	Ttl	Year 2	Ttl	Year 3	Ttl
Exc	20	-4 +4	20				
G	20	-4 +4	20				
F	20	-4 + 4	20				
Ρ	20	+4 -4	20				

Worst First

	Now	Year 1	Ttl	Year 2	Ttl	Year 3	Ttl
Exc	20	-4 +4	20	-4 +4	20		
G	20	-4 +4	20	-4 +4	20		
F	20	-4 + 4	20	-4 + 4	20		
Ρ	20	+4 -4	20	+4 -4	20		

Worst First

	Now	Year 1	Ttl	Year 2	Ttl	Year 3	Ttl
Exc	20	-4 +4	20	-4 +4	20	-4 +4	20
G	20	-4 +4	20	-4 +4	20	-4 +4	20
F	20	-4 + 4	20	-4 + 4	20	-4 + 4	20
Ρ	20	+4 -4	20	+4 -4	20	+4 -4	20

Alternate Strategy (75/25 split)

	Now	Year 1	Ttl	Year 2	Ttl	Year 3	Ttl
Exc	20	-4 +7	23				
G	20	-4 +4	20				
F	20	-4 + 4 -4	16				
Ρ	20	+4 -3	21				

PM 2 Example (75/25 split)

	Now	Year 1	Ttl	Year 2	Ttl	Year 3	Ttl
Exc	20	-4 +7	23	-5 +7	25		
G	20	-4 +4	20	-4 +5	21		
F	20	-4 + 4 -4	16	-3 + 4 -4	13		
Ρ	20	+4 -3	21	+3 -3	21		

Alternate Strategy (75/25 split)

	Now	Year 1	Ttl	Year 2	Ttl	Year 3	Ttl
Exc	20	-4 +7	23	-5 +7	25	-5 +7	27
G	20	-4 +4	20	-4 +5	21	-4 +5	22
F	20	-4 + 4 -4	16	-3 + 4 -4	13	-3 + 4 -4	10
Ρ	20	+4 -3	21	+3 -3	21	+3 -3	21

Comparison of Results in Year 3

NC Simulation

- Impact Analysis
 - 1000 mile example
 - Conditions distributed based on actual data
 - Compared worst first to a strategy with pavement preservation
 - Resurfaced 50 miles per year in the worst first scenario (poor roads)

 Fixed 100 miles of roads in fair condition in the preservation scenario

NC Simulation

Average Network Conditions

Wrap-Up

- Pavement management systems are a valuable tool to help manage facilities effectively
- The capabilities of a pavement management system need to be better used to demonstrate the effectiveness of our programs
- Cost analysis tools can be used to demonstrate cost-effectiveness.

Pavement Management Makes Cents!