2002 Design Guide General Overview

2002 Southeastern Pavement Management & Design Conference June 24, 2002

AASHTO GUIDE FOR Design of Pavement Structures

PUBLISHED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

1993 Version

AASHO Road Test (late 1950s)

NCHRP 1-37A

One Rainfall Zone...

Figure 9. Average annual precipitation, in inches.

(AASHO, 1961)

One Temperature Zone...

Figure 10. Average annual frost penetration, in inches.

One Subgrade...

Figure 16. Embankment construction, loop 1, using rotary speed mixers to process and adjust moisture content of soll

(AASHO, 1961)

Limited Set of Materials...

- One asphalt concrete
 - 3/4" surface course
 - 1" binder course
- One portland cement concrete (3500 psi @ 14 days)
- Four base materials
 - Well-graded crushed limestone (main experiment)
 - Well-graded uncrushed gravel (special studies)
 - Bituminous-treated base (special studies)
 - Cement-treated base (special studies)

Figure 57. Compacting subbase.

1950s Construction Methods...

1950s Vehicle Loads...

Ballin Bally provide the second secon

and loadings.

Traffic Input - ESALs

Which criterion? (They don't all give the same result!)

Limited Traffic Applications

NCHRP 1-37A

1950s Data Analysis... (Empirical)

Figure 26. Chart reader used with longitudinal profilometer to transcribe information to punched paper tape.

Figure 27. IBM tape-to-card printing punch.

Figure 28. Bendix G 15-D computer at project.

Field Performance - The LTPP Study

2002 Design Guide 1-37A Presentation Overview

- Status
- Flexible Pavements
- Rigid Pavements
- Rehabilitation
- Software Overview

The technical presentations on model details and software are on Tuesday.

NCHRP Project 1-37A

Development of the 2002 Guide for the Design of New and Rehabilitated Pavements

Responsible NCHRP Staff Officer Dr. Amir N. Hanna Senior Program Officer

Develop the 2002 Guide for design of new and rehabilitated pavement structures based on M-E techniques.

Study Requirements

- Application/enhancement of existing state-of-the-art technology.
- Common design parameters across pavement types:
 - Materials & soils characterization
 - Climate parameters
 - Traffic characterization
 - Reliability

Asphalt & PCC Pavements Treated Alike As Far As Possible!

1. Structural response models

2002

- 2. Materials characterization
- 3. Traffic characterization
- 4. Climate modeling
- 5. Mechanistic distress models
- 6. Smoothness models
- 7. Calibration of models
- 8. Rehabilitation
- 9. Design reliability
- 10. 2002 Design Guide text
- 11. 2002 Software
- 12. Training-Implementation

Inputs important! Many obstacles overcome to reduce number 8 complexity.

Asphalt & PCC Pavements Treated Alike As Far As Possible!

Soils & Materials Climate Traffic Design Features

Design Inputs to aid implementation:

Hierarchical approach for determining design inputs to help implementation.

Input Level	Determination of Input Values	Knowledge of Input Parameter
1	Project/Segment Specific Measurements	Good
2	Correlations/Regression equations, Regional values	Fair
3	Defaults, Educated Guess	Poor

Products You Will See:

- Manuals
- Software

- Guidelines
- Test Procedures
- User's Manual
- Training Materials

Products You Will See:

 Procedures for pavement, LCCA, traffic analysis

 Procedures for evaluating existing pavements

 Recommendations on rehabilitation treatments, subdrainage, and foundation improvements for problem soils

Products can be found on the 2002 Website:

www.2002designguide.com

2002 DESIGN GUIDE SOFTWARE

2002 Design Software Program

- Handles both U.S. Customary and SI units.
- User-friendly software with online/ onscreen help in two levels
 - Context sensitive help for all design inputs
 - Detail HTML help accessible from each screen
- Runs on Windows 98, 2000, NT, XP
- Hardcopy and electronic copy outputs (HTML and/or Excel Workbooks)

Program Layout

NCHRP 1-37A

Color Coded Status Icons

NCHRP 1-37A

2002 Design Guide Approach – Axle Load Spectra

- Axle load repetitions by
 - Vehicle class
 - Single axle
 - Tandem
 - Tridem
 - Quad
 - Special vehicles
 - Axle load group (load level)
 - Time
 - Monthly proportion
 - Hourly (PCC pavements) proportion
 - Annual growth

Predicted Distresses:

Longitudinal Cracking

IR

Rut

Depths

Thermal Cracking

Fatigue

Cracking

Concrete Pavement Structures

Joint Faulting

CRCP Punchout – Major Structural Distress

Rehabilitation

Part II—Chapter 5Part III—Chapter 5Evaluation existing pavementsIdentification of feasiblefor rehabilitationrehabilitation strategies

Part III—Chapter 6, HMAC rehabilitation of existing pavements Part III—Chapter 7, PCC rehabilitation of existing pavements

HMAC Overlay Analysis

PCC Restoration/Overlay Analysis

Implementation Issues

- Training on design procedure
- Establish database for design inputs
- Local validation and calibration of distress models
 - Establish database of sections in state
 - Input guidelines for local conditions and materials
 - Adjust performance models as needed

Communication and training are essential!

Mechanistic principles
Design-Analysis Process
Traffic

➢Climate

➤ Materials Characterization

- Prediction Models
- Pavement Evaluation

✓ Power Point Slides✓ Video, CD✓ Examples & Demos

✓Manuals

JPCP Calibration States (LTPP Data from 23 States)

NCHRP 1-37A

Local Calibration and Confirmation of Default Values

Inputs

•Review all inputs, procedures, defaults,

ranges.

•Establish agency procedures for inputs.

Calibration

- Materials database
- Traffic database
- Performance database
- Rehabilitation database

So What's Left?

Finalizing 2002 Guide

Finalizing Training Materials & Implementation

> Integration & Debugging Software

Completion of Calibration

Reliability Implementation

Nov 02

Benefits from the 2002 Guide.

