Incorporation of Environmental Factors in Flexible Pavement Design

By Eric C. Drumm The University of Tennessee

Presented at the Southeastern Pavement Management and Design Conference Nashville, TN June 25, 2002

Investigators

- Eric C. Drumm, University of Tennessee
- Ronald E. Yoder, University of Tennessee
- N. Randy Rainwater, University of Tennessee
- Roger W. Meier, The University of Memphis

Contributors

- Gang Zuo, University of Tennessee
- Wesley Wright, University of Tennessee
- P. Chris Marshall, The University of Memphis

Acknowledgments

- This work was performed as part of a research contract supported by the Tennessee Department of Transportation, Nashville, TN.
 - Harris Scott
 - Jim Maxwell
 - Bill Trolinger
 - Len Oliver
 - Mike Presley

- Mechanics-based approach to flexible pavement design
 - resilient modulus (M_r) used to define behavior of each layer in pavement system
 - M_r is a function of stress level, loading history, temperature, etc..
- M_r of subgrade soil dependent upon environmental factors
 - changes in moisture conditions
 - freeze/thaw state

What value(s) of M_r to use for design?

- High or maximum value
 - the "best case" properties may not be safe or reliable
- Low or minimum value
 - the "worst case" properties may not be economical
- Mean value
 - "average" properties may not reflect the relative duration of the seasons during which the "best case" and "worst case" properties occur

- Laboratory studies investigated variation of subgrade resilient modulus due to changes in
 - water content
 - degree of saturation
 - matric potential
- But, there is a little data on the seasonal variations of the moisture conditions

AASHTO Guide (1993)

- Suggests a procedure to incorporate the seasonal variation of subgrade $\rm M_r$ in the design process to determine $\rm\ M_R$

- (M_R = effective roadbed resilient modulus)

- $M_{\rm R}$ is the single value of subgrade resilient modulus which reflects the cumulative damage from the entire year
- unfortunately, knowledge of the seasonal variation of modulus is required

Objectives of Research

- Measure seasonal variations of water content and temperature in pavement systems
- Measure the effects of those variations on pavement structural capacity
- Develop methods to incorporate those effects into existing pavement design procedures used by TDOT

Objective 1

Measure seasonal variations of water content and temperature inside pavement systems

Instrumented Pavement Sites

Pavement Sections

LSS = Lime Stabilized Subgrade

I nstrumentation installed under outer wheel path from trench in shoulder

- Time Domain Reflectometry (TDR)
 - Used to measure water content
 - Probes have 5 segments
 - Probes are 5 feet long

Buried TDR Probes

Pavement Instrumentation Installing TDR Probes

TDR Probes

Pavement Edge Paved Shoulder Surface Layer -Binder Layer · Asphalt Concrete VVY Asphalt Treated Base -AA ANNA A VVV VV Asphalt Treated Base . ∇ $\overline{\mathcal{A}}$ \bigtriangledown ∇ ∇ Aggregate ∇ Underdrain AR Stone Base - ∇ \triangleleft Soil Subgrade **TDR Probes**

- Pan Lysimeters
 - Measure infiltration through AC layers

- Some located in the wheel path
- Others located under a pavement joint

- Thermistors
 - Measure pavement temperature
 - 1" below surface
 - 1" above stone base
 - AC mid-height
 - In soil subgrade

- Weather Station
 - Air temperature
 - Solar radiation
 - Rainfall
 - Relative humidity
 - Wind speed

Cable Trench

Underground Vault

- Data collected once each minute
- Hourly averages are stored on data logger
- Data sent to UT by cell phone once a day

Underground Instrumentation Panel

Field Verification Tests

Drilling & sampling pavement and subgrade

Field Verification Tests

Pan lysimeter flush test

- Index tests
 - Atterberg limits,
 Proctor tests, etc.
- Resilient modulus tests
 - AASHTO Standard
 Test Method

- Resilient modulus
 - AASHTO T 307-99 Determining the Resilient Modulus of Soils and Aggregate Materials

Observations: Pavement Temperature

Observations: Infiltration

McNairy County before binder and surface courses added

Observations: Infiltration

McNairy County before binder and surface courses added

Observations: Infiltration

- Since binder and surface course was placed, infiltration of water has essentially ceased (only small measurable amounts of infiltration).
- Function of lysimeters verified by field flush tests
- Will infiltration increase as pavement ages?

Observations: Subgrade Water Content

Objective 2

Measure the effects of moisture and temperature variations on pavement structural capacity

 Measured with Falling Weight Deflectometer

FWD

Measured Mid-Depth AC Temperature, T (C)

Measured Mid-Depth AC Temperature, T (C)

Pavement Response

Summer

Objective 3

Develop methods to incorporate environmental effects into TDOT pavement design procedures

- AC stiffness varies with temperature
- AC stiffness affects the stiffness of underlying stress-dependent materials
- Pavement life estimates are based on the pavement stiffness and so can vary widely depending on AC temperature used in the analysis

Temperature Averaging: Monthly Data

Temperature Averaging: Monthly and Daily Data

Temperature Averaging: Monthly, Daily, & Hourly Data

- What is the effect of the temperature averaging interval on computed design life?
- What is the effect of assuming a uniform distribution of traffic throughout the day?

Temperature Averaging Effect of Traffic Distribution

Subgrade	Pavement Life Overestimation Using Uniform Traffic and			
Stiffness	Hourly Average Temps	Daily Average Temps	Monthly Average Temps	
Very soft	11%			
Soft	10%			
Medium	10%			
Stiff	9%			

Subgrade	Pavement Life Overestimation Using Uniform Traffic and			
Stiffness	Hourly Average Temps	Daily Average Temps	Monthly Average Temps	
Very soft	11%	58%		
Soft	10%	54%		
Medium	10%	47%		
Stiff	9%	39%		

Subgrade	Pavement Life Overestimation Using Uniform Traffic and			
Stiffness	Hourly Average Temps	Daily Average Temps	Monthly Average Temps	
Very soft	11%	58%	76%	
Soft	10%	54%	71%	
Medium	10%	47%	62%	
Stiff	9%	39%	52%	

- To obtain the most reliable estimates of design life, use hourly temperature data whenever possible.
- If hourly truck traffic distribution is known, reliability can be increased even more.

Summary and Conclusions

Summary

- Four years of data at 4 sites in TN
 - Climatic data
 - Pavement temperature
 - Base and subgrade moisture
 - Infiltration
 - Layer moduli
- This is a rare and valuable dataset

Conclusions

- TDOT surface courses are relatively impermeable (at least early on)
- TDOT designs limit the stresses in subgrade
- Water content of subgrade may not change much seasonally (at least in fill sections)

Conclusions

- FWD is sensitive enough to pick up stress-dependence of subgrade soils
- Using monthly average temperatures to estimate asphalt modulus can lead to under-designed pavements

Issues to Address

Issues to Address

- As instrumented pavements age, how will they respond to wheel loads?
 - AC properties will certainly change
 - Infiltration will probably increase
 - Drainage layers may stop working
 - Water content may change long-term

Issues to Address

- Do "cut" sections respond the same as "fill" sections now and over time
 - Measure FWD response in cut areas at the same time as in fill areas
 - Measure water content (by sampling) and compare to TDR data in fill sections

Questions?

